Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Natural Product (NP) Details

General Information of the NP (ID: NP7459)
Name
Caffeic acid
Synonyms
caffeic acid; 3,4-Dihydroxycinnamic acid; 331-39-5; 501-16-6; 3-(3,4-dihydroxyphenyl)acrylic acid; trans-caffeic acid; 3,4-Dihydroxybenzeneacrylic acid; (E)-3-(3,4-dihydroxyphenyl)acrylic acid; (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid; 3,4-Dihydroxy-trans-cinnamate; 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-; 3-(3,4-Dihydroxyphenyl)propenoic acid; Cinnamic acid, 3,4-dihydroxy-; UNII-U2S3A33KVM; 3-(3,4-Dihydroxyphenyl)-2-propenoic acid; 4-(2'-Carboxyvinyl)-1,2-dihydroxybenzene; 4-(2-Carboxyethenyl)-1,2-dihydroxybenzene; NSC 57197; (E)-3,4-dihydroxycinnamic acid; 3-(3,4-Dihydroxy phenyl)-2-propenoic acid; MFCD00004392; CHEMBL145; U2S3A33KVM; 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, (E)-; AI3-63211; MLS000069738; CHEBI:16433; 3,4-Dihydroxycinnamic acid, predominantly trans; NSC57197; (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid; NSC-57197; NSC-623438; SMR000058214; (2E)-3-(3,4-dihydroxyphenyl)acrylic acid; Caffeicacid; 71693-97-5; caffeic-acid; CCRIS 847; HSDB 7088; SR-01000000203; EINECS 206-361-2; Caffeic acid dehydrogenation homopolymer; CHEBI:36281; 3,4-Dihydroxycinnamic acid, 99+%, predominantly trans isomer; Caffeic acid, 1; Caffeic acid polymer; Caffeic Acid,(S); PubChem8262; Caffeic acid, trans-; CAFFEIC ACID natural; Opera_ID_1700; Cinnamic acid,4-dihydroxy-; SCHEMBL23358; MLS001076493; MLS002207132; MLS002222302; MLS006011849; BIDD:ER0456; SPECTRUM1503987; 2-Propenoic acid,3-(3,4-dihydroxyphenyl)-, (2E)-; 3,4-Dihydroxycinnamate, XVII; ARONIS023304; BDBM4375; cid_689043; GTPL5155; 3-(3,4-Dihydroxyphenyl)-2-propenoic acid, homopolymer; ZINC58172; 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, homopolymer; AMY3943; HMS2235G09; HMS3260J17; HMS3649O17; ACN-S002765; BCP28271; HY-N0172; Tox21_500208; BBL012113; Caffeic Acid - CAS 331-39-5; CCG-38895; NSC623438; s2277; SBB006475; STK397812; Caffeic acid, >=98.0% (HPLC); 2-Propenoic acid,4-dihydroxyphenyl)-; AKOS000144463; AC-8006; ACN-035473; CS-8205; DB01880; LP00208; SDCCGMLS-0002982.P003; SDCCGSBI-0050196.P004; NCGC00017364-04; NCGC00017364-05; NCGC00017364-06; NCGC00017364-07; NCGC00017364-08; NCGC00017364-09; NCGC00017364-10; NCGC00017364-11; NCGC00017364-12; NCGC00017364-13; NCGC00017364-22; NCGC00022654-03; NCGC00022654-04; NCGC00022654-05; NCGC00022654-06; NCGC00022654-07; NCGC00022654-08; NCGC00022654-09; NCGC00260893-01; AS-10895; BP-30112; SMR004703501; ST057529; Caffeic acid, purum, >=95.0% (HPLC); AB0008394; AB00490047; EU-0100208; N1735; SW197202-3; 2-Morpholin-4-yl-isonicotinicacidhydrochloride; C 0625; C01197; C01481; M-2623; (2E)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid; 3-(3,4-Dihydroxyphenyl)-2-propenoic acid polymer; 331C395; Q414116; SR-01000000203-2; SR-01000000203-6; SR-01000000203-7; SR-01000000203-8; 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)- (9CI); BRD-K09900591-001-06-9; SR-01000000203-13; 2-Propenoic acid, 3-(3,4-dihydroxyphenyl)-, (2E)-; F3096-1708; 8B3E4DA7-F3B0-4972-A315-2E387071737F; trans-Caffeic acid, certified reference material, TraceCERT(R); Caffeic acid, matrix substance for MALDI-MS, >=99.0% (HPLC); Caffeic acid, United States Pharmacopeia (USP) Reference Standard; Caffeic acid, matrix substance for MALDI-MS, >=99.0% (HPLC), powder, light beige; 331-89-5
    Click to Show/Hide
Species Origin Coffea ...     Click to Show/Hide
Coffea
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Gentianales
Family: Rubiaceae
Genus: Coffea
Disease Thrombocytopenia [ICD-11: 3B64] Phase 4 [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C9H8O4
PubChem CID
689043
Canonical SMILES
C1=CC(=C(C=C1C=CC(=O)O)O)O
InChI
1S/C9H8O4/c10-7-3-1-6(5-8(7)11)2-4-9(12)13/h1-5,10-11H,(H,12,13)/b4-2+
InChIKey
QAIPRVGONGVQAS-DUXPYHPUSA-N
CAS Number
CAS 331-39-5
ChEBI ID
CHEBI:16433
Herb ID
HBIN019298
SymMap ID
SMIT00021
TCMSP ID
MOL000223
TTD Drug ID
D0V9EN
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Drug(s) Whose Efficacy can be Enhanced by This NP
          Erythromycin      Bacterial infection     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model Propionibacterium acnes KCTC 3314 Microorganism model Propionibacterium acnes
Staphylococcus aureus KCTC 1927 Microorganism model Staphylococcus aureus
Staphylococcus epidermidis KCTC 1370 Microorganism model Staphylococcus epidermidis
Pseudomonas aeruginosa KCTC 1637 Microorganism model Pseudomonas aeruginosa
                    Experimental
                    Result(s)
Among chitosan-conjugated derivatives, Chitosan-caffeic acid showed the highest antibacterial activity and also exhibited the synergistic antibacterial effect in combination with tetracycline, erythromycin, and lincomycin against acne-related bacteria.
          Tetracycline      Bacterial infection     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model Propionibacterium acnes KCTC 3314 Microorganism model Propionibacterium acnes
Staphylococcus aureus KCTC 1927 Microorganism model Staphylococcus aureus
Staphylococcus epidermidis KCTC 1370 Microorganism model Staphylococcus epidermidis
Pseudomonas aeruginosa KCTC 1637 Microorganism model Pseudomonas aeruginosa
                    Experimental
                    Result(s)
Among chitosan-conjugated derivatives, Chitosan-caffeic acid showed the highest antibacterial activity and also exhibited the synergistic antibacterial effect in combination with tetracycline, erythromycin, and lincomycin against acne-related bacteria.
          Cisplatin      Bladder cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model HeLa CVCL_0030 Endocervical adenocarcinoma Homo sapiens
Ca Ski CVCL_1100 Cervical squamous cell carcinoma Homo sapiens
SiHa CVCL_0032 Cervical squamous cell carcinoma Homo sapiens
C-33 A CVCL_1094 Cervical squamous cell carcinoma Homo sapiens
                    Experimental
                    Result(s)
Cisplatin and Caffeic acid in combination synergistically inhibited the growth of cells and induced apoptosis in HeLa and CaSki cells. The mechanism that is most likely to be behind the efficacy of this treatment is the modulation of apoptosis-regulated expression.
          Lincomycin      Gram-positive bacterial infection     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model Propionibacterium acnes KCTC 3314 Microorganism model Propionibacterium acnes
Staphylococcus aureus KCTC 1927 Microorganism model Staphylococcus aureus
Staphylococcus epidermidis KCTC 1370 Microorganism model Staphylococcus epidermidis
Pseudomonas aeruginosa KCTC 1637 Microorganism model Pseudomonas aeruginosa
                    Experimental
                    Result(s)
Among chitosan-conjugated derivatives, Chitosan-caffeic acid showed the highest antibacterial activity and also exhibited the synergistic antibacterial effect in combination with tetracycline, erythromycin, and lincomycin against acne-related bacteria.
Target and Pathway
Target(s) Arachidonate 5-lipoxygenase (5-LOX)  Molecule Info  [4]
Macrophage migration inhibitory factor (MIF)  Molecule Info  [5]
BioCyc Aspirin-triggered lipoxin biosynthesis Click to Show/Hide
2 Resolvin D biosynthesis
3 Leukotriene biosynthesis
4 Lipoxin biosynthesis
5 Aspirin triggered resolvin D biosynthesis
6 Aspirin triggered resolvin E biosynthesis
KEGG Pathway Tyrosine metabolism Click to Show/Hide
2 Phenylalanine metabolism
3 Arachidonic acid metabolism
4 Metabolic pathways
5 Serotonergic synapse
6 Ovarian steroidogenesis
7 Toxoplasmosis
NetPath Pathway IL4 Signaling Pathway Click to Show/Hide
Pathwhiz Pathway Tyrosine Metabolism Click to Show/Hide
2 Arachidonic Acid Metabolism
WikiPathways Spinal Cord Injury Click to Show/Hide
2 Adipogenesis
3 Vitamin D Receptor Pathway
4 Arachidonic acid metabolism
5 Eicosanoid Synthesis
6 Selenium Micronutrient Network
References
Reference 1 ClinicalTrials.gov (NCT02556814) Caffeic Acid Combining High-dose Dexamethasone in Management of ITP. U.S. National Institutes of Health.
Reference 2 Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria. Mar Drugs. 2017 Jun 8;15(6):167.
Reference 3 Synergistic effects of cisplatin-caffeic acid induces apoptosis in human cervical cancer cells via the mitochondrial pathways. Oncol Lett. 2018 May;15(5):7397-7402.
Reference 4 Phenidone protects the nigral dopaminergic neurons from LPS-induced neurotoxicity. Neurosci Lett. 2008 Nov 7;445(1):1-6.
Reference 5 How many drug targets are there Nat Rev Drug Discov. 2006 Dec;5(12):993-6.
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China