Skip to main content
  •   Home
  • 2026 Update 
    • Search for Activity
    • 2026 update
    • Search for Structure
    • 2026 update
  •   Download
  •   Manual

Molecule Details

General Information of the Molecule
Name
Autophagy protein 5(ATG5)
Synonyms
APG5L, ASP
Gene Name
ATG5
Gene ID
GeneID:9474
Sequence
MTDDKDVLRDVWFGRIPTCFTLYQDEITEREAEPYYLLLPRVSYLTLVTDKVKKHFQKVM
RQEDISEIWFEYEGTPLKWHYPIGLLFDLLASSSALPWNITVHFKSFPEKDLLHCPSKDA
IEAHFMSCMKEADALKHKSQVINEMQKKDHKQLWMGLQNDRFDQFWAINRKLMEYPAEEN
GFRYIPFRIYQTTTERPFIQKLFRPVAADGQLHTLGDLLKEVCPSAIDPEDGEKKNQVMI
HGIEPMLETPLQWLSEHLSYPDNFLHISIIPQPTD
    Click to Show/Hide
Function
Involved in autophagic vesicle formation. Conjugation with ATG12, through a ubiquitin-like conjugating system involving ATG7 as an E1-like activating enzyme and ATG10 as an E2-like conjugating enzyme, is essential for its function. The ATG12-ATG5 conjugate acts as an E3-like enzyme which is required for lipidation of ATG8 family proteins and their association to the vesicle membranes. Involved in mitochondrial quality control after oxidative damage, and in subsequent cellular longevity. Plays a critical role in multiple aspects of lymphocyte development and is essential for both B and T lymphocyte survival and proliferation. Required for optimal processing and presentation of antigens for MHC II. Involved in the maintenance of axon morphology and membrane structures, as well as in normal adipocyte differentiation. Promotes primary ciliogenesis through removal of OFD1 from centriolar satellites and degradation of IFT20 via the autophagic pathway. As part of the ATG8 conjugation system with ATG12 and ATG16L1, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress
    Click to Show/Hide
Uniprot ID
ATG5_HUMAN
KEGG ID
hsa:9474
Natural Product(s) of This Target
1 Niacin  NP Info  Saccharomyces cerevisiae
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (suilab@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China