Drug Details
| General Information of the Drug (ID: DR1288) | ||||
|---|---|---|---|---|
| Name |
Cefotaxime
|
|||
| Synonyms |
cefotaxime; Cephotaxime; 63527-52-6; Cefotaxime acid; E-cefotaxime; UNII-N2GI8B1GK7; Cefotaximum; Cefotaxima; CHEBI:204928; N2GI8B1GK7; 60846-21-1; (6R,7R)-3-(acetyloxymethyl)-7-[[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; Omnatax; Taxim; 5-Thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid, 3-((acetyloxy)methyl)-7-(((2Z)-(2-amino-4-thiazolyl)(methoxyimino)acetyl)amino)-8-oxo-, (6R,7R)-; Cefotaxime [INN:BAN]; Cefotaximum [INN-Latin]; Cefotaxima [INN-Spanish]; Cefotaxima acid; 4kot; (6R,7R)-3-(acetoxymethyl)-7-((E)-2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-(acetoxymethyl)-7-[[(2Z)-2-(2-aminothiazol-4-yl)-2-methoxyimino-acetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6r,7r)-3-(Acetyloxymethyl)-7-[[(2z)-2-(2-Amino-1,3-Thiazol-4-Yl)-2-Methoxyimino-Ethanoyl]amino]-8-Oxo-5-Thia-1-Azabicyclo[4.2.0]oct-2-Ene-2-Carboxylic Acid; (6R,7R)-3-Acetoxymethyl-7-{2-(2-amino-thiazol-4-yl)-2-[(Z)-methoxyimino]-acetylamino}-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R,Z)-3-(acetoxymethyl)-7-(2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido)-8-oxo-5-thia-1-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylic acid; 5-Thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, 3-[(acetyloxy)methyl]-7-[[(2Z)-(2-amino-4-thiazolyl)(methoxyimino)acetyl]amino]-8-oxo-, (6R,7R)-; Cefotaxime (INN); EINECS 264-299-1; Cefotaxim Hikma (TN); RU 24662; Prestwick2_000139; Prestwick3_000139; Claforan (*Sodium salt*); CHEMBL1730; Lopac0_000278; BSPBio_000218; BPBio1_000240; SCHEMBL3731931; DTXSID6022761; HY-A0088A; HMS2090M11; (6R,7R)-3-(acetoxymethyl)-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; ZINC3830437; AC-217; BDBM50482777; MFCD00864971; s4720; AKOS015951267; DB00493; SDCCGSBI-0050266.P002; (6R,7R)-3-(Acetoxymethyl)-7-(()-2-(2-amino-4-thiazolyl)-2-methoxyiminoglyoxylamino)-8-oco-5-thia-1-azabicyclo(4.2.0)oct-2-en-2-carbonsaeure; 3-(Acetyloxymethyl)-7-(((2E)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyimino-acetyl)amino)-8-oxo-5-thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid; AS-12690; clo[4.2.0]oct-2-ene-2-carboxylic acid; CS-0013515; C06885; D07647; J90010; 527C526; BRD-K78364995-236-03-5; Q27262497; Di- poundg-chlorotetrakis[2,4-dimethyl-6-(2-quinolinyl-KN)phenyl-KC]di-iridium; (6R)-3-(Acetoxymethyl)-7alpha-[[(2-amino-4-thiazolyl)[(E)-methoxyimino]acetyl]amino]-8-oxo-5-thia-1-azabicyclo[4.2.0]octa-2-ene-2-carboxylic acid; (6R,7R)-3-(acetyloxymethyl)-7-[[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyimino-ethanoyl]amino]-8-oxo-5-thia-1-azabicy; (6R,7R)-3-(acetyloxymethyl)-7-[[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyimino-ethanoyl]amino]-8-oxo-5-thia-1-azabicy clo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-[(acetyloxy)methyl]-7-[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetamido]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; (6R,7R)-3-[(acetyloxy)methyl]-7-{[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(methoxyimino)acetyl]amino}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid; 1056874-43-1; 3-(Acetoxymethyl)-7beta-[(2-amino-4-thiazolyl)(methoxyimino)acetylamino]cepham-3-ene-4-carboxylic acid; 5-Thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid, 3-((acetyloxy)methyl)-7-(((2-amino-4-thiazolyl)(methoxyimino)acetyl)amino)-8-oxo-, (6R-(6alpha,7beta(Z)))-
Click to Show/Hide
|
|||
| Molecular Type |
Small molecule
|
|||
| Disease | Bacterial infection [ICD-11: 1A00-1C4Z] | Approved | [1] | |
| Structure |
|
Click to Download Mol2D MOL |
||
| ADMET Property |
Absorption
The drug is rapidly absorbed following intramuscular injection
BDDCS Class
Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 3: high solubility and low permeability
Clearance
The drug present in the plasma can be removed from the body at the rate of 2.7 mL/min/kg
Elimination
30% of drug is excreted from urine in the unchanged form
Half-life
The concentration or amount of drug in body reduced by one-half in 1 hours
Half-life
The concentration or amount of drug in body reduced by one-half in 1.2 hours
Metabolism
The drug is metabolized via the kidneys
MRTD
The Maximum Recommended Therapeutic Dose (MRTD) of drug that ensured maximising efficacy and moderate side effect is 376.37631 micromolar/kg/day
Unbound Fraction
The unbound fraction of drug in plasma is 0.6%
Vd
Fluid volume that would be required to contain the amount of drug present in the body at the same concentration as in the plasma 0.19 L/kg
Click to Show/Hide
|
|||
| Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product | ||||
| Formula |
C16H17N5O7S2
|
|||
| PubChem CID | ||||
| Canonical SMILES |
CC(=O)OCC1=C(N2C(C(C2=O)NC(=O)C(=NOC)C3=CSC(=N3)N)SC1)C(=O)O
|
|||
| InChI |
1S/C16H17N5O7S2/c1-6(22)28-3-7-4-29-14-10(13(24)21(14)11(7)15(25)26)19-12(23)9(20-27-2)8-5-30-16(17)18-8/h5,10,14H,3-4H2,1-2H3,(H2,17,18)(H,19,23)(H,25,26)/b20-9-/t10-,14-/m1/s1
|
|||
| InChIKey |
GPRBEKHLDVQUJE-QSWIMTSFSA-N
|
|||
| CAS Number |
CAS 63527-52-6
|
|||
| ChEBI ID | ||||
| TTD Drug ID | ||||
| DrugBank ID | ||||
| Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally | ||||||
|---|---|---|---|---|---|---|
| α. A List of Natural Product(s) Able to Enhance the Efficacy of This Drug | ||||||
| 1,4-naphthoquinone | Setaria palmifolia | Click to Show/Hide the Molecular Data of This NP | ||||
| Achieving Therapeutic Synergy | Click to Show/Hide | |||||
| Representative Experiment Reporting the Effect of This Combination | [2] | |||||
| Detail(s) |
Combination Info
click to show the detail info of this combination
|
|||||
| In-vitro Model | Micrococcus luteus | Microorganism model | Micrococcus luteus | |||
| Bacillus cereus | Microorganism model | Bacillus cereus | ||||
| Methicillin-sensitive Staphylococcus aureus | Microorganism model | Staphylococcus aureus | ||||
| Methicillin-Resistant Staphylococcus aureus | Microorganism model | Staphylococcus aureus | ||||
| Escherichia coli | Microorganism model | Escherichia coli | ||||
| Klebsiella pneumoniae | Microorganism model | Klebsiella pneumoniae | ||||
| Pseudomonas aeruginosa | Microorganism model | Pseudomonas aeruginosa | ||||
| Salmonella choleraesuis | Microorganism model | Salmonella choleraesuis | ||||
| Experimental
Result(s) |
1,4-naphthoquinone combined with ascorbate have significant antitumor effects against MCF-7 cells in vitro and Ehrlich-ascites carcinoma in mice. | |||||
| Amentoflavone | Gingko biloba | Click to Show/Hide the Molecular Data of This NP | ||||
| Achieving Therapeutic Synergy | Click to Show/Hide | |||||
| Representative Experiment Reporting the Effect of This Combination | [3] | |||||
| Detail(s) |
Combination Info
click to show the detail info of this combination
|
|||||
| In-vitro Model | Enterococcus faecium ATCC 19434 | Microorganism model | Enterococcus faecium | |||
| Staphylococcus aureus ATCC 25923 | Microorganism model | Staphylococcus aureus | ||||
| Streptococcus mutans ATCC 3065 | Microorganism model | Streptococcus mutans | ||||
| Escherichia coli ATCC 43895 | Microorganism model | Escherichia coli | ||||
| Escherichia coli ATCC 25922 | Microorganism model | Escherichia coli | ||||
| Pseudomonas aeruginosa ATCC 27853 | Microorganism model | Pseudomonas aeruginosa | ||||
| Experimental
Result(s) |
Amentoflavone had a considerable antibacterial effect and synergistic interaction with antibiotics against various bacterial strains. The formation of hydroxyl radical would be a cause of the synergistic effect and that this oxidative stress originated from a transient NADH depletion. . | |||||
| Tea Polyphenols | Theaceae | Click to Show/Hide the Molecular Data of This NP | ||||
| Achieving Therapeutic Synergy | Click to Show/Hide | |||||
| Representative Experiment Reporting the Effect of This Combination | [4] | |||||
| Detail(s) |
Combination Info
click to show the detail info of this combination
|
|||||
| In-vitro Model | Klebsiella pneumoniae | Microorganism model | Klebsiella pneumoniae | |||
| Experimental
Result(s) |
Tea polyphenols used in combination with commonly used antibiotics showed synergistic bactericidal effect against multidrug-resistant Klebsiella pneumoniae. | |||||
| Target and Pathway | ||||
|---|---|---|---|---|
| Target(s) | Bacterial DD-carboxypeptidase (Bact vanYB) | Molecule Info | [5] | |