Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Drug Details

General Information of the Drug (ID: DR2168)
Name
Pioglitazone
Synonyms
Pioglitazone; 111025-46-8; Actos; 105355-27-9; Pioglitazona; Pioglitazonum; Glustin; Pioglitazonum [INN-Latin]; Pioglitazona [INN-Spanish]; 5-(4-(2-(5-ethylpyridin-2-yl)ethoxy)benzyl)thiazolidine-2,4-dione; Zactos; Duetact; U 72107; AD-4833; Pioglitazone-d4; CHEBI:8228; Pioglitazone (Actos); 5-{4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl}-1,3-thiazolidine-2,4-dione; 5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione; Actos (TN); 5-[4-[2-(5-Ethyl-2-pyridyl)ethoxy]benzyl]thiazolidine-2,4-dione; 5-[4-[2-(5-ETHYL-2-PYRIDYL)ETHOXY]BENZYL]-2,4-THIAZOLIDINEDIONE; U-72107; 2,4-thiazolidinedione, 5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]-; MFCD00865504; 105390-47-4; Pioglitazone [BAN:INN]; Pioglitazone [INN:BAN]; Piozone; Pioglu; 5-({4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl}methyl)-1,3-thiazolidine-2,4-dione; [( inverted exclamation markA)-5-[[4-[2-(5-ethyl-2-pyridinyl) ethoxy] phenyl] methyl]-2,4-] thiazolidinedione monohydrochlorid; pioglitazone (INN); 1134163-31-7; HSDB 7322; U-72107E; 5-{4-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl}-2,4-thiazolidinedione; SR-01000763737; Pioglitazone-[d4]; HS-0047; Spectrum_001623; Spectrum2_001679; Spectrum3_001002; Spectrum4_001130; Spectrum5_001480; Spectrum5_002067; SCHEMBL4121; BSPBio_002723; KBioGR_001619; KBioSS_002103; MLS006011848; SPBio_001897; GTPL2694; DTXSID3037129; KBio2_002103; KBio2_004671; KBio2_007239; KBio3_001943; HMS2089H14; HMS3651D09; HMS3712E16; HMS3884L10; Pharmakon1600-01504401; ACT02635; BCP26474; BBL029068; BDBM50103521; NSC758876; s2590; STL309607; STL373406; (+/-)-5-[p-[2-(ethyl-2-pyridyl)ethoxy]benzyl]-2,4-thiazolidinedione; AKOS015894953; AKOS022109420; AC-1021; CCG-220107; CS-1700; DB01132; MCULE-2346786634; NSC-758876; SB17323; (+/-)-5-[[4-[2-(5-Ethyl-2-pyridinyl)-ethoxy]phenyl]methyl]-2,4-thiazolidinedione; 2,4-Thiazolidinedione, 5-((4-(2-(5-ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-, (+-)-; NCGC00163128-01; NCGC00163128-02; NCGC00163128-03; NCGC00163128-04; NCGC00163128-05; NCGC00163128-06; NCGC00163128-07; AK-56326; HY-13956; SMR002204015; SY017473; SBI-0206791.P001; AB0004710; DB-027350; FT-0601906; FT-0645030; SW197561-3; C07675; D08378; J10289; K-0703; AB00698454-10; AB00698454_11; AB00698454_12; AB00698454_13; 355P279; A801204; Q417765; J-002506; J-516181; SR-01000763737-5; BRD-A48430263-003-02-4; BRD-A48430263-003-06-5; 5-[4-[2-(5-ethyl-2-pyridyl) ethoxy]benzyl]-2,4-thiazolidinedione; 5-[4-[2-(5-ethyl-2-pyridyl)eth-oxy]benzyl]-2,4-thiazolidinedione; 5-{4-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl}-2,4thiazolidinedione; 5-(4-(2-(5-ethylpyridin-2-yl)ethoxy)benzyl)-thiazolidine-2,4-dione; 5-[[4-[2-(5-Ethyl-2-pyridinyl)ethoxy]phenyl]methyl-2,4-thiazolidinedione; 5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]thiazolidine-2,4-dione; 5-[[4-[2-(5-ethyl-2-pyridyl)ethoxy] phenyl]methyl]-2,4-thiazolidinedione; (+/-)-5-((4-(2-(5-ethyl-2-pyridinyl)ethoxy)phenyl)methyl)-2,4-thiazolidinedione; 2,4-Thiazolidinedione, 5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]- (9CI); 2,4-Thiazolidinedione, 5-[[4-[2-(5-ethyl-2-pyridinyl)ethoxy]phenyl]methyl]-, (+/-)-; 5-[[4-[2-[(5-ethyl-2-pyridyl)]ethoxy]phenyl]methyl]thiazolidine- 2,4-dione; 5-{4-[2-(5-ethylpyridin-2-yl)ethoxy]benzyl}-4-hydroxy-1,3-thiazol-2(5H)-one
    Click to Show/Hide
Molecular Type
Small molecule
Disease Acute diabete complication [ICD-11: 5A2Y] Approved [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C19H20N2O3S
PubChem CID
4829
Canonical SMILES
CCC1=CN=C(C=C1)CCOC2=CC=C(C=C2)CC3C(=O)NC(=O)S3
InChI
1S/C19H20N2O3S/c1-2-13-3-6-15(20-12-13)9-10-24-16-7-4-14(5-8-16)11-17-18(22)21-19(23)25-17/h3-8,12,17H,2,9-11H2,1H3,(H,21,22,23)
InChIKey
HYAFETHFCAUJAY-UHFFFAOYSA-N
CAS Number
CAS 111025-46-8
ChEBI ID
CHEBI:8228
TTD Drug ID
D03OFF
DrugBank ID
DB01132
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Natural Product(s) Able to Enhance the Efficacy of This Drug
          D-cycloserine      Streptomyces garyphalus     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vivo Model Orofacial neuropathic pain mouse model was used in this study.
                    Experimental
                    Result(s)
The DCS/PIO combination not only attenuated orofacial neuropathic pain and anxiety-related behaviors associated with trigeminal nerve injury, but it also improved mitochondrial bioenergetics.
          Metformin      Galega officinalis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Experimental
                    Result(s)
Metformin/pioglitazone/exenatide in patients with newly diagnosed T2DM is more effective and results in fewer hypoglycaemic events than sequential add-on therapy with metformin, sulfonylurea and then basal insulin.
Target and Pathway
Target(s) PPAR-gamma (PPARG)  Molecule Info  [4]
KEGG Pathway PPAR signaling pathway Click to Show/Hide
2 AMPK signaling pathway
3 Osteoclast differentiation
4 Huntington's disease
5 Pathways in cancer
6 Transcriptional misregulation in cancer
7 Thyroid cancer
NetPath Pathway IL1 Signaling Pathway Click to Show/Hide
2 TGF_beta_Receptor Signaling Pathway
3 Leptin Signaling Pathway
Panther Pathway CCKR signaling map ST Click to Show/Hide
Pathway Interaction Database Noncanonical Wnt signaling pathway Click to Show/Hide
2 Calcineurin-regulated NFAT-dependent transcription in lymphocytes
3 Signaling events mediated by HDAC Class I
4 RXR and RAR heterodimerization with other nuclear receptor
5 Regulation of retinoblastoma protein
Reactome PPARA activates gene expression Click to Show/Hide
2 Transcriptional regulation of white adipocyte differentiation
3 Nuclear Receptor transcription pathway
WikiPathways Wnt Signaling Pathway Netpath Click to Show/Hide
2 Nuclear Receptors in Lipid Metabolism and Toxicity
3 Differentiation of white and brown adipocyte
4 Regulation of Lipid Metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
5 Transcriptional Regulation of White Adipocyte Differentiation
6 Adipogenesis
7 SREBP signalling
8 Nuclear Receptors
References
Reference 1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2694).
Reference 2 Combination Drug Therapy of Pioglitazone and D-cycloserine Attenuates Chronic Orofacial Neuropathic Pain and Anxiety by Improving Mitochondrial Function Following Trigeminal Nerve Injury. Clin J Pain. 2018 Feb;34(2):168-177.
Reference 3 Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the Efficacy and Durability of Initial Combination Therapy for Type 2 Diabetes (EDICT): a randomized trial. Diabetes Obes Metab. 2015 Mar;17(3):268-75.
Reference 4 Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med. 2002 Nov;8(11):1281-7.
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China