Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Drug Details

General Information of the Drug (ID: DR2639)
Name
Venetoclax
Synonyms
Venclexta
    Click to Show/Hide
Molecular Type
Small molecule
Disease Chronic lymphocytic leukaemia [ICD-11: 2A82] Approved [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C45H50ClN7O7S
PubChem CID
49846579
Canonical SMILES
CC1(CCC(=C(C1)C2=CC=C(C=C2)Cl)CN3CCN(CC3)C4=CC(=C(C=C4)C(=O)NS(=O)(=O)C5=CC(=C(C=C5)NCC6CCOCC6)[N+](=O)[O-])OC7=CN=C8C(=C7)C=CN8)C
InChI
1S/C45H50ClN7O7S/c1-45(2)15-11-33(39(26-45)31-3-5-34(46)6-4-31)29-51-17-19-52(20-18-51)35-7-9-38(42(24-35)60-36-23-32-12-16-47-43(32)49-28-36)44(54)50-61(57,58)37-8-10-40(41(25-37)53(55)56)48-27-30-13-21-59-22-14-30/h3-10,12,16,23-25,28,30,48H,11,13-15,17-22,26-27,29H2,1-2H3,(H,47,49)(H,50,54)
InChIKey
LQBVNQSMGBZMKD-UHFFFAOYSA-N
CAS Number
CAS 1257044-40-8
GDSC
Venetoclax
TTD Drug ID
D00PBX
DrugBank ID
DB11581
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Natural Product(s) Able to Enhance the Efficacy of This Drug
          Flavopiridol      Dysoxylum binectariferum     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BCL2L11  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
                    In-vitro Model NCI-H929 CVCL_1600 Plasma cell myeloma Homo sapiens
U266B1 CVCL_0566 Plasma cell myeloma Homo sapiens
OPM-2 CVCL_1625 Plasma cell myeloma Homo sapiens
KMS-11 CVCL_2989 Plasma cell myeloma Homo sapiens
RPMI-8226 CVCL_0014 Plasma cell myeloma Homo sapiens
KMS-28PE CVCL_2995 Plasma cell myeloma Homo sapiens
                    In-vivo Model The two models employed included an orthotopic murine model (NOD/SCID-gamma mice injected intravenously via tail vein with 5*106 PS-R (bortezomib-resistant U266) stably transfected with a construct encoding luciferase) and an immunocompetent model (C57BL/KaLwR1 mice injected intravenously via tail vein with 5*106 murine MM 5TGM1 cells stably expressing luciferase.
                    Experimental
                    Result(s)
Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo.
          Triptolide      Tripterygium hypoglaucum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BBC3  Molecule Info 
Pathway MAP
Up-regulation Expression BCL2L11  Molecule Info 
Pathway MAP
Up-regulation Expression BID  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CASP9  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
Up-regulation Expression PARP1  Molecule Info 
Pathway MAP
Up-regulation Expression PMAIP1  Molecule Info 
Pathway MAP
                    In-vitro Model MV4-11 CVCL_0064 Childhood acute monocytic leukemia Homo sapiens
MOLM-13 CVCL_2119 Adult acute myeloid leukemia Homo sapiens
U-937 CVCL_0007 Adult acute monocytic leukemia Homo sapiens
THP-1 CVCL_0006 Childhood acute monocytic leukemia Homo sapiens
KG-1a CVCL_1824 Adult acute myeloid leukemia Homo sapiens
                    Experimental
                    Result(s)
Combining triptolide with ABT-199 is effective against acute myeloid leukemia through reciprocal regulation of Bcl-2 family proteins and activation of the intrinsic apoptotic pathway.
Target and Pathway
Target(s) Apoptosis regulator Bcl-2 (BCL-2)  Molecule Info  [4]
KEGG Pathway NF-kappa B signaling pathway Click to Show/Hide
2 HIF-1 signaling pathway
3 Sphingolipid signaling pathway
4 Protein processing in endoplasmic reticulum
5 PI3K-Akt signaling pathway
6 Apoptosis
7 Adrenergic signaling in cardiomyocytes
8 Focal adhesion
9 Neurotrophin signaling pathway
10 Cholinergic synapse
11 Amyotrophic lateral sclerosis (ALS)
12 Toxoplasmosis
13 Tuberculosis
14 Hepatitis B
15 Epstein-Barr virus infection
16 Pathways in cancer
17 MicroRNAs in cancer
18 Colorectal cancer
19 Prostate cancer
20 Small cell lung cancer
NetPath Pathway IL5 Signaling Pathway Click to Show/Hide
2 TCR Signaling Pathway
3 IL2 Signaling Pathway
4 IL3 Signaling Pathway
5 Leptin Signaling Pathway
6 RANKL Signaling Pathway
7 TSLP Signaling Pathway
Panther Pathway Apoptosis signaling pathway Click to Show/Hide
2 Oxidative stress response
3 CCKR signaling map ST
Pathway Interaction Database Role of Calcineurin-dependent NFAT signaling in lymphocytes Click to Show/Hide
2 IL2-mediated signaling events
3 IL2 signaling events mediated by PI3K
4 Ceramide signaling pathway
5 Direct p53 effectors
6 RXR and RAR heterodimerization with other nuclear receptor
7 ATF-2 transcription factor network
8 C-MYB transcription factor network
9 HIV-1 Nef: Negative effector of Fas and TNF-alpha
10 Caspase Cascade in Apoptosis
11 Signaling events mediated by Stem cell factor receptor (c-Kit)
12 EPO signaling pathway
13 IL2 signaling events mediated by STAT5
14 Validated targets of C-MYC transcriptional repression
Reactome Activation of BAD and translocation to mitochondria Click to Show/Hide
2 BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members
3 The NLRP1 inflammasome
WikiPathways DNA Damage Response (only ATM dependent) Click to Show/Hide
2 Senescence and Autophagy in Cancer
3 IL-2 Signaling Pathway
4 FAS pathway and Stress induction of HSP regulation
5 Focal Adhesion
6 Kit receptor signaling pathway
7 IL-3 Signaling Pathway
8 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways
9 Apoptosis
10 Nanoparticle triggered autophagic cell death
11 Amyotrophic lateral sclerosis (ALS)
12 Integrated Pancreatic Cancer Pathway
13 Corticotropin-releasing hormone
14 Interleukin-11 Signaling Pathway
15 Prostate Cancer
16 miR-targeted genes in muscle cell - TarBase
17 miR-targeted genes in lymphocytes - TarBase
18 miR-targeted genes in leukocytes - TarBase
19 Integrated Breast Cancer Pathway
20 Integrated Cancer pathway
21 Intrinsic Pathway for Apoptosis
22 Apoptosis Modulation and Signaling
23 TP53 Network
24 Influenza A virus infection
25 IL-5 Signaling Pathway
References
Reference 1 2016 FDA drug approvals. Nat Rev Drug Discov. 2017 Feb 2;16(2):73-76.
Reference 2 Flavopiridol enhances ABT-199 sensitivity in unfavourable-risk multiple myeloma cells in vitro and in vivo. Br J Cancer. 2018 Feb 6;118(3):388-397.
Reference 3 Combining triptolide with ABT-199 is effective against acute myeloid leukemia through reciprocal regulation of Bcl-2 family proteins and activation of the intrinsic apoptotic pathway. Cell Death Dis. 2020 Jul 22;11(7):555.
Reference 4 ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202-8.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China