Natural Product (NP) Details
General Information of the NP (ID: NP6636) | |||||
---|---|---|---|---|---|
Name |
Daunorubicin
|
||||
Synonyms |
daunorubicin; Daunomycin; 20830-81-3; Cerubidine; Acetyladriamycin; Leukaemomycin C; Rubidomycin; (+)-Daunomycin; DaunoXome; Daunorubicinum; Daunorubicine; Cerubidin; Rubomycin C; RP 13057; C27H29NO10; NSC-82151; Daunarubicinum; Daunorrubicina; DaunoXome (TN); Daunamycin; FI 6339; UNII-ZS7284E0ZP; ZS7284E0ZP; (8S-cis)-8-Acetyl-10-((3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyrannosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-5,12-napthacenedione; CHEBI:41977; FI6339; FI-6339; NCGC00024246-05; Anthracyline; NDC-0082-4155; DSSTox_CID_2883; DSSTox_RID_76773; DSSTox_GSID_22883; RP-13057; Daunorubicinum [INN-Latin]; MLS000069508; Daunorubicin [INN:BAN]; RCRA waste no. U059; (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranoside; CAS-20830-81-3; Daunorubicin (INN); NSC82151; SMR000058559; NDC 0082-4155; CCRIS 914; SR-01000000033; SR-05000001600; NSC-83142; HSDB 5095; NCI-C04693; EINECS 244-069-7; NSC 83142; VS-103; BRN 1445583; Tocris-1467; Daunorubicin(Daunomycin); AI3-52942; Prestwick3_000487; CHEMBL178; SCHEMBL3041; BSPBio_000353; 5,12-Naphthacenedione, 8-acetyl-10-((3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-, (8S-cis)-; cid_62770; BPBio1_000389; GTPL7063; DTXSID7022883; BDBM32017; Valrubicin impurity, daunorubicin; HMS2089H04; HMS2091K06; Pharmakon1600-01500223; ZINC3917708; Tox21_110896; BDBM50368352; GR-318; HY-13062A; LMPK13050002; MFCD00866340; NSC756717; Tox21_110896_1; CCG-212559; CS-2004; DB00694; NSC-756717; NCGC00024246-06; NCGC00024246-07; NCGC00024246-09; NCGC00024246-10; NCGC00024246-15; NCGC00025173-01; (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-(methyloxy)-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranoside; (1S,3S)-3-acetyl-3,5,12-trihydroxy-10-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranoside; (7S,9R)-9-Acetyl-7-[(2S,4S,5S,6S)-4-amino-5-hydroxy-6-methyl-oxan-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione; (7S,9S)-9-acetyl-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione; 5,12-Naphthacenedione, 8-acetyl-10-((3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-, (8S,10S)-; SBI-0206677.P002; AB00514669; 30D813; C01907; D07776; Epirubicin hydrochloride impurity, daunorubicin-; 15159-EP2270008A1; 15159-EP2272827A1; 15159-EP2277565A2; 15159-EP2277566A2; 15159-EP2277567A1; 15159-EP2277568A2; 15159-EP2277569A2; 15159-EP2277570A2; 15159-EP2289892A1; 15159-EP2292280A1; 15159-EP2292617A1; 15159-EP2295416A2; 15159-EP2295426A1; 15159-EP2295427A1; 15159-EP2298748A2; 15159-EP2298778A1; 15159-EP2301928A1; 15159-EP2305642A2; 15159-EP2305679A1; 15159-EP2308833A2; 15159-EP2308861A1; 15159-EP2311808A1; 15159-EP2311829A1; 15159-EP2311842A2; 15159-EP2316832A1; 15159-EP2316833A1; 16803-EP2272832A1; 16803-EP2277565A2; 16803-EP2277566A2; 16803-EP2277567A1; 16803-EP2277568A2; 16803-EP2277569A2; 16803-EP2277570A2; 16803-EP2280012A2; 16803-EP2281815A1; 16803-EP2286812A1; 16803-EP2292280A1; 16803-EP2292615A1; 16803-EP2298768A1; 16803-EP2301928A1; 16803-EP2301933A1; 16803-EP2305640A2; 16803-EP2305671A1; 16803-EP2311825A1; 16803-EP2311827A1; 16803-EP2311840A1; 16803-EP2316937A1; AB00514669-09; AB01644616_09; AB01644616_10; Q411659; SR-01000000033-4; SR-05000001600-1; SR-05000001600-2; BRD-K43389675-001-01-3; BRD-K43389675-003-02-7; BRD-K43389675-003-03-5; BRD-K43389675-003-20-9; 2-HYDROXY-5-(4-NITRO-PHENYLSULFAMOYL)-BENZOICACID; (7S,9S)-7-[(2R,4S,5S,6S)-4-azanyl-6-methyl-5-oxidanyl-oxan-2-yl]oxy-9-ethanoyl-4-methoxy-6,9,11-tris(oxidanyl)-8,10-dihydro-7H-tetracene-5,12-dione;hydrochloride; (7S,9S)-9-acetyl-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-quinone;hydrochloride; (7S,9S)-9-acetyl-7-[[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyl-2-oxanyl]oxy]-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione;hydrochloride; (8S,10S)-8-acetyl-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-6,8,11-trihydroxy-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione; (8S-cis)-8-Acetyl-10-[(3-amino-2,3,6-trideoxy-.alpha.-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro--6,8,11-trihydroxy-1-methoxy-5,12-naphthacenedione; 5,12-Naphthacenedione,8-acetyl-10-[(3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,8,11-trihydroxy-1-methoxy-, (8S,10S)-
Click to Show/Hide
|
||||
Species Origin | Streptomyces peucetius ... | Click to Show/Hide | |||
Streptomyces peucetius | |||||
Disease | Acute myeloid leukemia [ICD-11: 2A60] | Approved | [1] | ||
Structure |
Click to Download Mol2D MOL |
||||
Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product | |||||
Formula |
C27H29NO10
|
||||
PubChem CID | |||||
Canonical SMILES |
CC1C(C(CC(O1)OC2CC(CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)C)O)N)O
|
||||
InChI |
1S/C27H29NO10/c1-10-22(30)14(28)7-17(37-10)38-16-9-27(35,11(2)29)8-13-19(16)26(34)21-20(24(13)32)23(31)12-5-4-6-15(36-3)18(12)25(21)33/h4-6,10,14,16-17,22,30,32,34-35H,7-9,28H2,1-3H3/t10-,14-,16-,17-,22+,27-/m0/s1
|
||||
InChIKey |
STQGQHZAVUOBTE-VGBVRHCVSA-N
|
||||
CAS Number |
CAS 20830-81-3
|
||||
ChEBI ID | |||||
TTD Drug ID |
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally | ||||||
---|---|---|---|---|---|---|
α. A List of Drug(s) Whose Efficacy can be Enhanced by This NP | ||||||
NL-101 | Anaplastic large cell lymphoma | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [2] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Molecule(s)
Regulation |
Up-regulation | Expression | BAD | Molecule Info |
Pathway MAP
|
|
Up-regulation | Expression | BCL2L11 | Molecule Info |
Pathway MAP
|
||
Up-regulation | Cleavage | CASP3 | Molecule Info |
Pathway MAP
|
||
Up-regulation | Cleavage | CASP7 | Molecule Info |
Pathway MAP
|
||
In-vitro Model | MV4-11 | CVCL_0064 | Childhood acute monocytic leukemia | Homo sapiens | ||
MOLM-13 | CVCL_2119 | Adult acute myeloid leukemia | Homo sapiens | |||
THP-1 | CVCL_0006 | Childhood acute monocytic leukemia | Homo sapiens | |||
HL-60 | CVCL_0002 | Adult acute myeloid leukemia | Homo sapiens | |||
Kasumi-1 | CVCL_0589 | Acute myeloid leukemia | Homo sapiens | |||
NOMO-1 | CVCL_1609 | Adult acute monocytic leukemia | Homo sapiens | |||
OCI-AML-2 | CVCL_1619 | Adult acute myeloid leukemia | Homo sapiens | |||
OCI-AML-3 | CVCL_1844 | Adult acute myeloid leukemia | Homo sapiens | |||
Experimental
Result(s) |
NL 101 in combination with daunorubicin could be an alternative novel therapeutic strategy for treating leukemia. | |||||
Oxaliplatin | Colorectal cancer | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [3] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Molecule(s)
Regulation |
Down-regulation | Expression | TOP2A | Molecule Info |
Pathway MAP
|
|
In-vitro Model | SK-OV-3 | CVCL_0532 | Ovarian serous cystadenocarcinoma | Homo sapiens | ||
Experimental
Result(s) |
Composite micelles showed reduced systematic toxicity and greater synergistic effect than combination of small molecules of hydrophilic platinum drug Oxa(II) and hydrophobic drug DRB both in vitro and in vivo. | |||||
Bortezomib | Mantle cell lymphoma | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [4] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Molecule(s)
Regulation |
Up-regulation | Expression | BCL-2 | Molecule Info |
Pathway MAP
|
|
Up-regulation | Cleavage | CASP3 | Molecule Info |
Pathway MAP
|
||
Up-regulation | Cleavage | CASP8 | Molecule Info |
Pathway MAP
|
||
Up-regulation | Cleavage | CASP9 | Molecule Info |
Pathway MAP
|
||
In-vitro Model | Jurkat | CVCL_0065 | T acute lymphoblastic leukemia | Homo sapiens | ||
MOLT-4 | CVCL_0013 | Adult T acute lymphoblastic leukemia | Homo sapiens | |||
Daudi | CVCL_0008 | EBV-related Burkitt lymphoma | Homo sapiens | |||
Experimental
Result(s) |
The combination of bortezomib and daunorubicin significantly enhanced their apoptosis inducing effect in T ALL cells, which may warrant further investigation in preclinical and clinical investigations. | |||||
SG611-PDCD5 | Acute lymphoblastic leukemia | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [5] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
In-vitro Model | KG-1a | CVCL_1824 | Adult acute myeloid leukemia | Homo sapiens | ||
MEG-01 | CVCL_0425 | Chronic myelogenous leukemia | Homo sapiens | |||
BV-173 | CVCL_0181 | Chronic myelogenous leukemia | Homo sapiens | |||
SUP-B15 | CVCL_0103 | B acute lymphoblastic leukemia | Homo sapiens | |||
K-562 | CVCL_0004 | Chronic myelogenous leukemia | Homo sapiens | |||
HL-60 | CVCL_0002 | Adult acute myeloid leukemia | Homo sapiens | |||
In-vivo Model | The triple-regulated CRAd carrying SG611-PDCD5 and nude mouse xenograft models of K562 cells were constructed in this study. | |||||
Experimental
Result(s) |
Treatment with SG611-PDCD5 in combination with low-dose daunorubicin elicited more potent anti-proliferative and proapoptotic effects in leukemic cells in a dose-dependent manner. | |||||
SG611-VSTM1 | Acute lymphoblastic leukemia | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [6] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
In-vitro Model | K-562 | CVCL_0004 | Chronic myelogenous leukemia | Homo sapiens | ||
In-vivo Model | For a xenograft model, 1*109 human K562 cells were injected into the inguinal mammary fat pad of Balb/c congenic athymic nude mice. | |||||
Experimental
Result(s) |
An important role for VSTM1 in the pathogenesis of leukemia, and SG611-VSTM1 may be a promising agent for enhancing chemosensitivity in leukemia therapy. | |||||
Glasdegib | Chronic myelomonocytic leukaemia | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [7] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Experimental
Result(s) |
Glasdegib plus cytarabine/daunorubicin was well tolerated and associated with clinical activity in patients with untreated AML or high-risk MDS. | |||||
Sunitinib | Malignant digestive organ neoplasm | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [8] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
In-vitro Model | MV4-11 | CVCL_0064 | Childhood acute monocytic leukemia | Homo sapiens | ||
Ba/F3 | CVCL_0161 | Healthy | Mus musculus | |||
MOLM-14 | CVCL_7916 | Adult acute myeloid leukemia | Homo sapiens | |||
Experimental
Result(s) |
The addition of potent FLT3 inhibitors such as SU11248 to AML chemotherapy regimens could result in improved treatment results. | |||||
Imatinib | Mantle cell lymphoma | Click to Show/Hide the Molecular Data of This Drug | ||||
Achieving Therapeutic Synergy | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [9] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Experimental
Result(s) |
The combination of IM with a standard "3+7" regiment was well tolerated and provided a high response rate. | |||||
β. A List of Drug(s) Whose Adverse Effect can be Decreased by This NP | ||||||
PP242 | Colon cancer | Click to Show/Hide the Molecular Data of This Drug | ||||
Decreasing Adverse Drug Reaction | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [10] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
Molecule(s)
Regulation |
Up-regulation | Phosphorylation | AKT1 | Molecule Info |
Pathway MAP
|
|
Down-regulation | Expression | MCL1 | Molecule Info |
Pathway MAP
|
||
In-vitro Model | THP-1 | CVCL_0006 | Childhood acute monocytic leukemia | Homo sapiens | ||
SUP-B15 | CVCL_0103 | B acute lymphoblastic leukemia | Homo sapiens | |||
JeKo-1 | CVCL_1865 | Mantle cell lymphoma | Homo sapiens | |||
NB4 | CVCL_0005 | Acute promyelocytic leukemia | Homo sapiens | |||
Experimental
Result(s) |
PP242 effectively eliminated this deleterious side effect of DNR and synergistically enhanced the anticancer ability of DNR treatment. PP242, especially in combination with DNR, exerts significant antileukemia effects. | |||||
Rapamycin | Multiple myeloma | Click to Show/Hide the Molecular Data of This Drug | ||||
Decreasing Adverse Drug Reaction | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [11] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
In-vitro Model | SUP-B15 | CVCL_0103 | B acute lymphoblastic leukemia | Homo sapiens | ||
Experimental
Result(s) |
RAPA effectively eliminated this deleterious side effect of DNR, which might enhance DNR's ability to kill drug-resistant cancer. | |||||
Olaparib | Ovarian cancer | Click to Show/Hide the Molecular Data of This Drug | ||||
Decreasing Adverse Drug Reaction | Click to Show/Hide | |||||
Representative Experiment Reporting the Effect of This Combination | [12] | |||||
Detail(s) | Combination Info click to show the detail info of this combination | |||||
In-vitro Model | KG-1a | CVCL_1824 | Adult acute myeloid leukemia | Homo sapiens | ||
Hep-G2 | CVCL_0027 | Hepatocellular carcinoma | Homo sapiens | |||
Experimental
Result(s) |
Olaparib interferes with anthracycline metabolism, and suggest that this phenomenon might be utilized for combating anthracycline resistance. |
Target and Pathway | ||||
---|---|---|---|---|
Target(s) | Human Deoxyribonucleic acid (hDNA) | Molecule Info | [13] |