Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Molecule Details

General Information of the Molecule
Name
Glycogen synthase kinase-3 beta (GSK-3B)
Synonyms
Serine/threonine-protein kinase GSK3B; GSK-3 beta
Gene Name
GSK3B
Gene ID
2932
Sequence
MSGRPRTTSFAESCKPVQQPSAFGSMKVSRDKDGSKVTTVVATPGQGPDRPQEVSYTDTK
VIGNGSFGVVYQAKLCDSGELVAIKKVLQDKRFKNRELQIMRKLDHCNIVRLRYFFYSSG
EKKDEVYLNLVLDYVPETVYRVARHYSRAKQTLPVIYVKLYMYQLFRSLAYIHSFGICHR
DIKPQNLLLDPDTAVLKLCDFGSAKQLVRGEPNVSYICSRYYRAPELIFGATDYTSSIDV
WSAGCVLAELLLGQPIFPGDSGVDQLVEIIKVLGTPTREQIREMNPNYTEFKFPQIKAHP
WTKVFRPRTPPEAIALCSRLLEYTPTARLTPLEACAHSFFDELRDPNVKLPNGRDTPALF
NFTTQELSSNPPLATILIPPHARIQAAASTPTNATAASDANTGDRGQTNNAASASASNST
    Click to Show/Hide
Function
Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes. Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation. Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin. Is necessary for the establishment of neuronal polarity and axon outgrowth. Phosphorylates MARK2, leading to inhibit its activity. Phosphorylates SIK1 at 'Thr-182', leading to sustain its activity. Phosphorylates ZC3HAV1 which enhances its antiviral activity. Phosphorylates SNAI1, leading to its BTRC-triggered ubiquitination and proteasomal degradation. Phosphorylates SFPQ at 'Thr-687' upon T-cell activation. Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including ARNTL/BMAL1, CLOCK and PER2. Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation. Phosphorylates ARNTL/BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation. Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation. Regulates the circadian rhythmicity of hippocampal long-term potentiation and ARNTL/BMLA1 and PER2 expression. Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions, leading to activate KAT5/TIP60 acetyltransferase activity and promote acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer. Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1.
    Click to Show/Hide
Uniprot ID
GSK3B_HUMAN
EC Number
EC: 2.7.11.26 ; EC: 2.7.11.1
Pfam
PF00069
KEGG ID
hsa2932
TTD ID
T70977
A List of Drug Combination(s) Able to Regulate This Molecule
          Expression Regulation     Click to Show/Hide the Drug Combination Regulating This Molecule
                 Down-regulation     Click to Show/Hide
                    Drug Combination 1 Down-regulating the Expression of This Molecule [1]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Arsenic trioxide   NP Info  + Sorafenib   Drug Info 
                    Structure +
                    Drug Combination 2 Down-regulating the Expression of This Molecule [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Luteolin   NP Info  + Gemcitabine   Drug Info 
                    Structure +
                 Up-regulation     Click to Show/Hide
                    Drug Combination 1 Up-regulating the Expression of This Molecule [6]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Curcumin   NP Info  + Mitomycin C   Drug Info 
                    Structure +
                    Drug Combination 2 Up-regulating the Expression of This Molecule [7]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Triptolide   NP Info  + Cisplatin   Drug Info 
                    Structure +
          Phosphorylation Regulation     Click to Show/Hide the Drug Combination Regulating This Molecule
                 Down-regulation     Click to Show/Hide
                    Drug Combination 1 Down-regulating the Phosphorylation of This Molecule [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Apigenin   NP Info  + Abivertinib   Drug Info 
                    Structure +
                    Drug Combination 2 Down-regulating the Phosphorylation of This Molecule [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Piperine   NP Info  + Celecoxib   Drug Info 
                    Structure +
                    Drug Combination 3 Down-regulating the Phosphorylation of This Molecule [5]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Arsenic trioxide   NP Info  + Etoposide   Drug Info 
                    Structure +
                 Up-regulation     Click to Show/Hide
                    Drug Combination 1 Up-regulating the Phosphorylation of This Molecule [8]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Arsenic trioxide   NP Info  + Lithium chloride   Drug Info 
                    Structure +
                    Drug Combination 2 Up-regulating the Phosphorylation of This Molecule [9]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Name Toosendanin   NP Info  + Regorafenib   Drug Info 
                    Structure +
Natural Product(s) of This Target
1 Ellagic acid  NP Info  Investigative Lagerstroemia speciosa
2 Lithium  NP Info  Phase 2 Spodumene
3 Salvianolic acid A  NP Info  Investigative Salvia
4 Xanthohumol  NP Info  Investigative Humulus lupulus
Drug(s) of This Target
1 PD184352  Drug Info  Investigative Chronic lymphocytic leukaemia
References
Reference 1 [Inhibitory effect of sorafenib combined with arsenic trioxide on hepatocellular carcinoma cells]. Nan Fang Yi Ke Da Xue Xue Bao. 2008 Apr;28(4):639-41.
Reference 2 Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model. Pancreas. 2015 Jan;44(1):144-51.
Reference 3 Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer. 2020 Feb 3;11(8):2123-2132.
Reference 4 Piperine and Celecoxib synergistically inhibit colon cancer cell proliferation via modulating Wnt/beta-catenin signaling pathway. Phytomedicine. 2021 Apr;84:153484.
Reference 5 Arsenic trioxide potentiates the effectiveness of etoposide in Ewing sarcomas. Int J Oncol. 2016 Nov;49(5):2135-2146.
Reference 6 Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells. Toxicol Appl Pharmacol. 2011 Sep 15;255(3):327-38.
Reference 7 Triptolide sensitizes cisplatin-resistant human epithelial ovarian cancer by inhibiting the phosphorylation of AKT. J Cancer. 2019 Jun 2;10(13):3012-3020.
Reference 8 Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One. 2017 Jun 2;12(6):e0178857.
Reference 9 Synergistic effect of toosendanin and regorafenib against cell proliferation and migration by regulating WWOX signaling pathway in hepatocellular carcinoma. Phytother Res. 2021 May 31.
Reference 10 Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem. 2006 Apr 20;49(8):2363-6.
Reference 11 The GSK3 kinase inhibitor lithium produces unexpected hyperphosphorylation of -catenin, a GSK3 substrate, in human glioblastoma cells. Biol Open. 2018 Jan 26;7(1):bio030874.
Reference 12 Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic Biol Med. 2016 Oct;99:508-519.
Reference 13 Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3Beta-Nrf2 signal axis. Redox Biol. 2017 Aug;12:311-324.
Reference 14 Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95-105.
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China