Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Natural Product (NP) Details

General Information of the NP (ID: NP1559)
Name
Luteolin
Synonyms
Luteolol; 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one; Luteoline; Digitoflavone; Flacitran; Weld Lake; Cyanidenon 1470; Salifazide; Yama kariyasu; 5,7,3',4'-Tetrahydroxyflavone; UNII-KUX1ZNC9J2; CI Natural Yellow 2; 4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-; 7-Tetrahydroxyflavone; CCRIS 3790; EINECS 207-741-0; KUX1ZNC9J2; CHEMBL151; BRN 0292084; 2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one
    Click to Show/Hide
Species Origin Abrus precatorius ...     Click to Show/Hide
Abrus precatorius
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Abrus
Species: Abrus precatorius
Crotalaria pallida
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Crotalaria
Species: Crotalaria pallida
Helianthus annuus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Helianthus
Species: Helianthus annuus
Nelumbo nucifera
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Proteales
Family: Nelumbonaceae
Genus: Nelumbo
Species: Nelumbo nucifera
Pistia stratiotes
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Alismatales
Family: Araceae
Genus: Pistia
Species: Pistia stratiotes
Achillea millefolium
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Achillea
Species: Achillea millefolium
Spirodela polyrhiza
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Alismatales
Family: Araceae
Genus: Spirodela
Species: Spirodela polyrhiza
Plantago major
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Plantaginaceae
Genus: Plantago
Species: Plantago major
Plantago major
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Plantaginaceae
Genus: Plantago
Species: Plantago major
Salvia rosmarinus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Lamiaceae
Genus: Salvia
Species: Salvia rosmarinus
Chrysanthemum x morifolium
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Chrysanthemum
Species: Chrysanthemum x morifolium
Gleditsia sinensis
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Gleditsia
Species: Gleditsia sinensis
Agrimonia pilosa
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Rosales
Family: Rosaceae
Genus: Agrimonia
Species: Agrimonia pilosa
Lonicera japonica
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Dipsacales
Family: Caprifoliaceae
Genus: Lonicera
Species: Lonicera japonica
Chrysanthemum indicum
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Chrysanthemum
Species: Chrysanthemum indicum
Causonis japonica
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Vitales
Family: Vitaceae
Genus: Causonis
Species: Causonis japonica
Scabiosa tschiliensis
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Dipsacales
Family: Caprifoliaceae
Genus: Scabiosa
Species: Scabiosa tschiliensis
Indigofera tinctoria
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Indigofera
Species: Indigofera tinctoria
Cyanthillium cinereum
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Cyanthillium
Species: Cyanthillium cinereum
Viola tricolor
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malpighiales
Family: Violaceae
Genus: Viola
Species: Viola tricolor
Humulus scandens
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Rosales
Family: Cannabaceae
Genus: Humulus
Species: Humulus scandens
Cardiospermum halicacabum
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Sapindales
Family: Sapindaceae
Genus: Cardiospermum
Species: Cardiospermum halicacabum
Pseudognaphalium affine
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Asterales
Family: Asteraceae
Genus: Pseudognaphalium
Species: Pseudognaphalium affine
Lonicera confusa
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Dipsacales
Family: Caprifoliaceae
Genus: Lonicera
Species: Lonicera confusa
Siphonostegia chinensis
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Orobanchaceae
Genus: Siphonostegia
Species: Siphonostegia chinensis
Alternanthera philoxeroides
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Caryophyllales
Family: Amaranthaceae
Genus: Alternanthera
Species: Alternanthera philoxeroides
Thunbergia grandiflora
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Acanthaceae
Genus: Thunbergia
Species: Thunbergia grandiflora
Phlomoides rotata
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Lamiales
Family: Lamiaceae
Genus: Phlomoides
Species: Phlomoides rotata
Disease Bacterial infection [ICD-11: 1A00-1C4Z] Approved [1]
Discovery agent [ICD-11: N.A.] Investigative [2]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C15H10O6
PubChem CID
5280445
Canonical SMILES
C1=CC(=C(C=C1C2=CC(=O)C3=C(C=C(C=C3O2)O)O)O)O
InChI
1S/C15H10O6/c16-8-4-11(19)15-12(20)6-13(21-14(15)5-8)7-1-2-9(17)10(18)3-7/h1-6,16-19H
InChIKey
IQPNAANSBPBGFQ-UHFFFAOYSA-N
CAS Number
CAS 491-70-3
Herb ID
HBIN033803
ETMC ID
841
SymMap ID
SMIT00002
TCMSP ID
MOL000006
TTD Drug ID
D04AIT
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Drug(s) Whose Efficacy can be Enhanced by This NP
          Cisplatin      Bladder cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CASP6  Molecule Info 
Pathway MAP
Up-regulation Expression CASP9  Molecule Info 
Pathway MAP
Down-regulation Expression CCNB1  Molecule Info 
Pathway MAP
Down-regulation Expression MPIP3  Molecule Info 
Pathway MAP
Down-regulation Expression POLD1  Molecule Info 
Pathway MAP
Up-regulation Expression TP53  Molecule Info 
Pathway MAP
                    In-vitro Model AGS CVCL_0139 Gastric adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
A combinational treatment of cisplatin and luteolin induced more effectively cell growth inhibition, compared to cisplatin treatment alone.
          Lapatinib      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BCL2L11  Molecule Info 
Pathway MAP
Up-regulation Expression CDKN1A  Molecule Info 
Pathway MAP
Up-regulation Expression FOXO3  Molecule Info 
Pathway MAP
Up-regulation Expression GADD45A  Molecule Info 
Pathway MAP
Up-regulation Expression NQO1  Molecule Info 
Pathway MAP
                    In-vitro Model SK-BR-3 CVCL_0033 Breast adenocarcinoma Homo sapiens
ZR-75-1 CVCL_0588 Invasive breast carcinoma Homo sapiens
BT-474 CVCL_0179 Invasive breast carcinoma Homo sapiens
                    In-vivo Model Xenograft nude mice were inoculated subcutaneously with 0.1 mL of cell suspension (ZR-75-1 and BT-474 cells).
                    Experimental
                    Result(s)
Combination of lapatinib and luteolin enhances the therapeutic efficacy of lapatinib on human breast cancer through the FOXO3a/NQO1 pathway.
          SMC3      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [5]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression BCL-xL  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Down-regulation Expression SOD Mn  Molecule Info 
Pathway MAP
                    In-vitro Model NCI-H23 CVCL_1547 Lung adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
Attenuating Smac mimetic compound 3-induced NF-kappaB activation by luteolin leads to synergistic cytotoxicity in cancer cells.
          IL-24      Colon cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [6]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model L-02 CVCL_6926 Ovarian cancer Homo sapiens
MHCC97-H CVCL_4972 Adult hepatocellular carcinoma Homo sapiens
Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
PLC/PRF/5 CVCL_0485 Adult hepatocellular carcinoma Homo sapiens
Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
                    In-vivo Model The xenograft model was established by subcutaneously injection of 4*106 MHCC97-H cells into the right flank of these female BALB/c nude mice (5 weeks old).
                    Experimental
                    Result(s)
Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells.
          CD55-TRAIL      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [7]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Down-regulation Expression XIAP  Molecule Info 
Pathway MAP
                    In-vitro Model HT-29 CVCL_0320 Colon adenocarcinoma Homo sapiens
SW620 CVCL_0547 Colon adenocarcinoma Homo sapiens
SW480 CVCL_0546 Colon adenocarcinoma Homo sapiens
                    In-vivo Model A total of 8*106 HT-29 cells were injected subcutaneously into the right flank of female BALB/c nude mice (4 weeks old).
                    Experimental
                    Result(s)
The addition of luteolin enhanced oncolytic adenovirus-mediated enhanced green fluorescent protein, early region 1A and TRAIL expression, synergistically inhibited tumor growth and promoted CRC cellular apoptosis in vitro and in vivo, and significantly decreased cytotoxicity in lung/bronchial normal epithelial cells, compared with single treatment.
          TNF-related apoptosis inducing ligand      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [8]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model A-549 CVCL_0023 Lung adenocarcinoma Homo sapiens
                    In-vivo Model A549 non-small cell lung cancer cells (2*106) resuspended in 0.1mL of PBS were injected subcutaneously into athymic (nu/nu) male nude mice (5-6 weeks old).
                    Experimental
                    Result(s)
Luteolin enhances TNF-related apoptosis-inducing ligand's anticancer activity in a lung cancer xenograft mouse model.
          Sorafenib      Renal cell carcinoma     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [9]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation JNK1  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation.
          Celecoxib      Rheumatoid arthritis     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [10]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAD  Molecule Info 
Pathway MAP
Up-regulation Expression BAK  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
                    In-vitro Model MCF-7 CVCL_0031 Invasive breast carcinoma Homo sapiens
MDA-MB-231 CVCL_0062 Breast adenocarcinoma Homo sapiens
SK-BR-3 CVCL_0033 Breast adenocarcinoma Homo sapiens
                    In-vivo Model MDA-MB-231 cells (2*107) were inoculated subcutaneously into the right flanks of female BALB/c nude mice (6-7 weeks old).
                    Experimental
                    Result(s)
Synergistic effect between celecoxib and luteolin is dependent on estrogen receptor in human breast cancer cells.
          5-fluorouracil      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [11]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CDKN1A  Molecule Info 
Pathway MAP
Up-regulation Expression DRAM1  Molecule Info 
Pathway MAP
Up-regulation Expression TP53  Molecule Info 
Pathway MAP
                    In-vivo Model Solid tumors were induced by intramuscular inoculation of 0.2 mL of ascetic fluid, containing approximately 2.5*106 Ehrlich asites carcinoma cells, in the right thigh of the hind limb of each mouse.
                    Experimental
                    Result(s)
Luteolin and 5-flurouracil act synergistically to induce cellular weapons in experimentally induced Solid Ehrlich Carcinoma.
          Gemcitabine      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [12]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression GSK-3B  Molecule Info 
Pathway MAP
Down-regulation Expression KRAS  Molecule Info 
Pathway MAP
Down-regulation Expression p105  Molecule Info 
Pathway MAP
                    Biological
                    Regulation
Up-regulation Cytochrome c release
                    In-vitro Model BxPC-3 CVCL_0186 Pancreatic ductal adenocarcinoma Homo sapiens
                    In-vivo Model Male athymic nude mice were inoculated with BxPC-3 cells (1*106 cells/mouse) cells.
                    Experimental
                    Result(s)
Combination of luteolin and gemcitabine promoted apoptotic cell death in pancreatic tumor cells in vivo through inhibition of the K-ras/GSK-3beta/NF-kappaB signaling pathway, leading to a reduction in the Bcl-2/Bax ratio, release of cytochrome c, and activation of caspase 3.
          Gefitinib      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [13]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Biological
                    Regulation
Arrest Cell cycle arrest in G0/G1 phase
                    In-vitro Model PC-3 CVCL_0035 Prostate carcinoma Homo sapiens
                    Experimental
                    Result(s)
Luteolin and gefitinib regulate CCP gene expression through a common mechanism involving EGFR-associated tyrosine kinase.
          Imatinib      Mantle cell lymphoma     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [14]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Combination treatment may provide better outcomes in terms of cytotoxicity and thus reduce the dosages of imatinib used.
    β. A List of Drug(s) Whose Resistance can be Reversed by This NP
          Tamoxifen      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [15]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression CCNE2  Molecule Info 
Pathway MAP
                    In-vitro Model MCF-7 CVCL_0031 Invasive breast carcinoma Homo sapiens
BT-483 CVCL_2319 Invasive breast carcinoma Homo sapiens
BT-474 CVCL_0179 Invasive breast carcinoma Homo sapiens
MDA-MB-231 CVCL_0062 Breast adenocarcinoma Homo sapiens
AU565 CVCL_1074 Breast adenocarcinoma Homo sapiens
MCF-10A CVCL_0598 Healthy Homo sapiens
                    Experimental
                    Result(s)
Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression.
          Oxaliplatin      Colorectal cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [16]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression GABPA  Molecule Info 
Pathway MAP
Down-regulation Expression GSTA1  Molecule Info 
Pathway MAP
Down-regulation Expression GSTA2  Molecule Info 
Pathway MAP
Down-regulation Expression HMOX1  Molecule Info 
Pathway MAP
Down-regulation Expression NQO1  Molecule Info 
Pathway MAP
                    In-vitro Model HCT 116 CVCL_0291 Colon carcinoma Homo sapiens
SW620 CVCL_0547 Colon adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway.
Target and Pathway
Target(s) Acetyl-CoA:lyso-PAF acetyltransferase (PCAT)  Molecule Info  [17]
Bacterial DD-carboxypeptidase (Bact vanYB)  Molecule Info  [1]
DNA topoisomerase I (TOP1)  Molecule Info  [18]
NetPath Pathway IL2 Signaling Pathway Click to Show/Hide
Panther Pathway DNA replication Click to Show/Hide
Pathway Interaction Database Caspase Cascade in Apoptosis Click to Show/Hide
WikiPathways Integrated Pancreatic Cancer Pathway Click to Show/Hide
References
Reference 1 Has nature already identified all useful antibacterial targets Curr Opin Microbiol. 2008 Oct;11(5):387-92.
Reference 2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5215).
Reference 3 Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol Cell Biochem. 2008 Jun;313(1-2):125-32.
Reference 4 Combination of lapatinib and luteolin enhances the therapeutic efficacy of lapatinib on human breast cancer through the FOXO3a/NQO1 pathway. Biochem Biophys Res Commun. 2020 Oct 20;531(3):364-371.
Reference 5 Attenuating Smac mimetic compound 3-induced NF-kappaB activation by luteolin leads to synergistic cytotoxicity in cancer cells. J Cell Biochem. 2009 Dec 1;108(5):1125-31.
Reference 6 Luteolin enhances the antitumor efficacy of oncolytic vaccinia virus that harbors IL-24 gene in liver cancer cells. J Clin Lab Anal. 2021 Mar;35(3):e23677.
Reference 7 Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model. Mol Med Rep. 2017 Dec;16(6):9375-9382.
Reference 8 Luteolin enhances TNF-related apoptosis-inducing ligand's anticancer activity in a lung cancer xenograft mouse model. Biochem Biophys Res Commun. 2012 Jan 13;417(2):842-6.
Reference 9 Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation. Oncol Lett. 2018 Jul;16(1):648-653.
Reference 10 Synergistic effect between celecoxib and luteolin is dependent on estrogen receptor in human breast cancer cells. Tumour Biol. 2015 Aug;36(8):6349-59.
Reference 11 Luteolin and 5-flurouracil act synergistically to induce cellular weapons in experimentally induced Solid Ehrlich Carcinoma: Realistic role of P53; a guardian fights in a cellular battle. Chem Biol Interact. 2019 Sep 1;310:108740.
Reference 12 Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model. Pancreas. 2015 Jan;44(1):144-51.
Reference 13 Luteolin and gefitinib regulation of EGF signaling pathway and cell cycle pathway genes in PC-3 human prostate cancer cells. J Steroid Biochem Mol Biol. 2010 Oct;122(4):219-31.
Reference 14 Cytotoxic Effects of Some Flavonoids and Imatinib on the K562 Chronic Myeloid Leukemia Cell Line: Data Analysis Using the Combination Index Method. Balkan Med J. 2019 Feb 28;36(2):96-105.
Reference 15 Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem. 2013 Nov 15;141(2):1553-61.
Reference 16 Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev. 2014;15(6):2911-6.
Reference 17 Inhibition of lysoPAF acetyltransferase activity by flavonoids. Inflamm Res. 1996 Nov;45(11):546-9.
Reference 18 Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem J. 2002 Sep 1;366(Pt 2):653-61.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China