Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Drug Details

General Information of the Drug (ID: DR2073)
Name
Sorafenib
Synonyms
Nexavar; Sorafenibum; Sorafenib [INN]; Nexavar (TN); Sorafenib (INN); N-[4-Chloro-3-(trifluoromethyl)phenyl]-N'-[4-[2-(N-methylcarbamoyl)-4-pyridyloxy]phenyl]urea; N-(4-Chloro-3-(trifluoromethyl)phenyl)-N'-(4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl)urea; N-(4-chloro-3-(trifluoromethyl)phenyl)-N'-(4-(2-(N-methylcar bamoyl)-4-pyridyloxy)phenyl)urea; 4(4-{3-[4-Chloro-3-(trifluoromethyl)phenyl]ureido}phenoxy)-N(sup 2)-methylpyridine-2-carboxamide; 4-(4-((((4-Chloro-3-(trifluoromethyl)phenyl)amino)carbonyl)amino)phenoxy)-N-methyl-2-pyridinecarboxamide; 4-(4-(3-(4-chloro-3-trifluoromethylphenyl)ureido)phenoxy)pyridine-2-carboxyllic acid methyamide-4-methylbenzenesulfonate; 4-(4-{3-(4-Chloro-3-(trifluoromethyl)phenyl)ureido}phenoxy)-N(sup 2)-methylpyridine-2-carboxamide; 4-[4-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)phenoxy]-N-methylpyridine-2-carboxamide; 4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methyl-pyridine-2-carboxamide; 4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methylpyridine-2-carboxamide; 4-[4-[[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]phenoxy]-N-methyl-2-pyridinecarboxamide; 4-{4-[({[4-CHLORO-3-(TRIFLUOROMETHYL)PHENYL]AMINO}CARBONYL)AMINO]PHENOXY}-N-METHYLPYRIDINE-2-CARBOXAMIDE; Sorafenib (Pan-TK inhibitor)
    Click to Show/Hide
Molecular Type
Small molecule
Disease Renal cell carcinoma [ICD-11: 2C90] Approved [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C21H16ClF3N4O3
PubChem CID
216239
Canonical SMILES
CNC(=O)C1=NC=CC(=C1)OC2=CC=C(C=C2)NC(=O)NC3=CC(=C(C=C3)Cl)C(F)(F)F
InChI
1S/C21H16ClF3N4O3/c1-26-19(30)18-11-15(8-9-27-18)32-14-5-2-12(3-6-14)28-20(31)29-13-4-7-17(22)16(10-13)21(23,24)25/h2-11H,1H3,(H,26,30)(H2,28,29,31)
InChIKey
MLDQJTXFUGDVEO-UHFFFAOYSA-N
CAS Number
CAS 284461-73-0
ChEBI ID
CHEBI:50924
GDSC
Sorafenib
TTD Drug ID
D0W5HK
DrugBank ID
DB00398
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Natural Product(s) Able to Enhance the Efficacy of This Drug
          Amentoflavone      Gingko biloba     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression CASP8  Molecule Info 
Pathway MAP
Down-regulation Expression CASP9  Molecule Info 
Pathway MAP
Down-regulation Expression CFLAR  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
Down-regulation Expression XIAP  Molecule Info 
Pathway MAP
                    In-vivo Model To establish the animal model, 1*107 SK-Hep1 cells were suspended in 150 ul mix-ture of serum-free DMEM and matrigel (2: 1) and inoculated subcutaneously in the right legs of nude mice.
                    Experimental
                    Result(s)
Amentoflavone boosts therapeutic efficacy of sorafenib through blockage of anti-apoptotic potential and induction of apoptosis in HCC in vivo.
          Apigenin      Psilotum nudum     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BID  Molecule Info 
Pathway MAP
Up-regulation Expression CASP10  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CASP8  Molecule Info 
Pathway MAP
Up-regulation Expression CDKN1A  Molecule Info 
Pathway MAP
Up-regulation Expression CDKN2A  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
The combination of apigenin and sorafenib arrested cell cycle and increased apoptotic gene expressions more than single treatment groups.
          Arsenic trioxide      Realgar and orpiment     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression AKT1  Molecule Info 
Pathway MAP
Down-regulation Expression BECN1  Molecule Info 
Pathway MAP
Up-regulation Expression BRAF  Molecule Info 
Pathway MAP
Down-regulation Expression c-RAF  Molecule Info 
Pathway MAP
Up-regulation Expression MAP1LC3A  Molecule Info 
Pathway MAP
Up-regulation Expression MEK1  Molecule Info 
Pathway MAP
Down-regulation Expression MEK2  Molecule Info 
Pathway MAP
Down-regulation Expression mTOR  Molecule Info 
Pathway MAP
Down-regulation Expression PIK3CB  Molecule Info 
Pathway MAP
Up-regulation Expression PTEN  Molecule Info 
Pathway MAP
Down-regulation Expression ULK1  Molecule Info 
Pathway MAP
                    In-vitro Model KG-1 CVCL_0374 Adult acute myeloid leukemia Homo sapiens
U-937 CVCL_0007 Adult acute monocytic leukemia Homo sapiens
                    Experimental
                    Result(s)
The combination effect of ATO and sorafenib in AML cell lines is apoptotic and autophagy.
          Artesunate      Artemisia annua     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [5]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation c-RAF  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation mTOR  Molecule Info 
Pathway MAP
                    In-vitro Model SK-HEP-1 CVCL_0525 Hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
                    In-vivo Model For a xenograft model, 1 * 107 SK-hep1 cells were injected subcutaneously into 4-6 weeks old BALB/c nu/nu mice.
                    Experimental
                    Result(s)
Sor and Art combination promotes a dual inhibitory effect on both RAF/MAPK and PI3K/AKT/mTOR pathways which contributes to apoptosis burst.
          Betulin      Betula pendula     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [6]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression SREBF1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
BEL-7402 CVCL_5492 Human hepatocellular carcinoma Homo sapiens
MHCC97-L CVCL_4973 Adult hepatocellular carcinoma Homo sapiens
MHCC97-H CVCL_4972 Adult hepatocellular carcinoma Homo sapiens
                    In-vivo Model To establish the animal model, HCC cells were injected subcutaneously into nude mice.
                    Experimental
                    Result(s)
SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity.
          Betulinic Acid      Rubus alceifolius     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [7]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression AKT1  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-xL  Molecule Info 
Pathway MAP
Up-regulation Expression DDIT3  Molecule Info 
Pathway MAP
Down-regulation Expression mTOR  Molecule Info 
Pathway MAP
                    In-vitro Model A-549 CVCL_0023 Lung adenocarcinoma Homo sapiens
NCI-H358 CVCL_1559 Lung adenocarcinoma Homo sapiens
A-427 CVCL_1055 Lung adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
Combination therapy with low concentrations of sorafenib and betulinic acid had the capacity to induce high levels of cell death and abolish clonogenic activity in some NSCLC cell lines regardless of KRAS mutations.
          Bufalin      Bufo gargarizans     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [8]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression mTOR  Molecule Info 
Pathway MAP
                    In-vitro Model PLC/PRF/5 CVCL_0485 Adult hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
                    In-vivo Model A total of 5x106 SMMC-7721 cells in 0.2 ml phosphate-buffered saline (PBS) were injected into the right flank of each mouse (six-week old male Balb/c nude mice) to form subcutaneous tumors.
                    Experimental
                    Result(s)
Synergistic anti-hepatoma effect of bufalin combined with sorafenib via mediating the tumor vascular microenvironment by targeting mTOR/VEGF signaling.
          Capsaicin      Capsicum annuum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [9]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression EGFR  Molecule Info 
Pathway MAP
Up-regulation Expression PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model LM3 CVCL_D269 Malignant neoplasms Mus musculus
Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
                    In-vivo Model Five-week-old BALB/C nude mice received a subcutaneous injection of 1*107 LM3 cells suspended in 100 uL sterile PBS into the right flank.
                    Experimental
                    Result(s)
Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling.
          Chrysin      Tripterygium wilfordii     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [10]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation ERK2  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Chrysin-induced ERK1/2 phosphorylation enhances the sensitivity of human gepatocellular carcinoma cells to sorafenib.
          Curcumin      Hellenia speciosa     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [11]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression APOA1  Molecule Info 
Pathway MAP
Down-regulation Expression FASN  Molecule Info 
Pathway MAP
Down-regulation Expression HIF-1A  Molecule Info 
Pathway MAP
Down-regulation Expression IL1B  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation JAK-1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation JAK-2  Molecule Info 
Pathway MAP
Down-regulation Expression LDHA  Molecule Info 
Pathway MAP
Down-regulation Expression p105  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vivo Model 1*105 of H22 tumor cells were inoculated in axillae of Kunming mice (22-25 g).
                    Experimental
                    Result(s)
Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment.
          Ellagic acid      Lagerstroemia speciosa     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [12]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Activity CASP3  Molecule Info 
Pathway MAP
                    Biological
                    Regulation
Up-regulation ROS generation
Up-regulation Cytochrome c release
                    In-vivo Model Dietylnitrosamine and 2-acetylami nofluorene were used to induce HCC in male Sprague-Dawley rats.
                    Experimental
                    Result(s)
EA and SOR are effective on the HCC rat model through mitochondria and hepatocytes targeting.
          Fisetin      Toxicodendron succedaneum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [13]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression AKT1  Molecule Info 
Pathway MAP
Up-regulation Expression BAK  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression ERK1  Molecule Info 
Pathway MAP
Down-regulation Expression ERK1  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation MEK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation MEK2  Molecule Info 
Pathway MAP
Down-regulation Expression mTOR  Molecule Info 
Pathway MAP
Up-regulation Expression PARP1  Molecule Info 
Pathway MAP
Down-regulation Expression PIK3CB  Molecule Info 
Pathway MAP
                    In-vitro Model A-375 CVCL_0132 Amelanotic melanoma Homo sapiens
RPMI-7951 CVCL_1666 Melanoma Homo sapiens
                    In-vivo Model Mice were subcutaneously inoculated with 0.1ml of 2.5*106 A375 cells or 5*106 SK-MEL-28 cells (prepared in a 50ul media + 50ul matrigel) in each flank to initiate tumor growth.
                    Experimental
                    Result(s)
Fisetin potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.
          Kaempferol      Equisetum hyemale     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [14]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABCB1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
N1S1 Hepatocellular carcinoma Rattus norvegicus
                    Experimental
                    Result(s)
Kaempferol-mediated sensitization enhances chemotherapeutic efficacy of sorafenib against hepatocellular carcinoma.
          Luteolin      Abrus precatorius     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [15]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation JNK1  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation.
          Magnolol      Magnolia officinalis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [16]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
                    In-vitro Model SK-HEP-1 CVCL_0525 Hepatocellular carcinoma Homo sapiens
Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
AKT inhibition is associated with magnolol-enhanced the therapeutic effect of sorafenib in HCC.
          Metformin      Galega officinalis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [17]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression PRKAA2  Molecule Info 
Pathway MAP
                    In-vitro Model HTh74 CVCL_6288 Thyroid gland anaplastic carcinoma Homo sapiens
                    Experimental
                    Result(s)
Sorafenib and metformin synergistically decreased the proliferation of ATC cell lines and the outgrowth of their derived cancer stem cells.
          Nobiletin      Ageratum conyzoides     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [18]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Up-regulation Expression CDKN1A  Molecule Info 
Pathway MAP
Up-regulation Expression RB1  Molecule Info 
Pathway MAP
                    In-vitro Model PC-3 CVCL_0035 Prostate carcinoma Homo sapiens
                    Experimental
                    Result(s)
NOB and SOR combination was more effective than SOR and NOB alone and reduced the exposure time for SOR and NOB in PC-3 cells. NOB and SOR combination significantly caused much more apoptotic cell death and cell cycle arrest at G0/G1 phase by up-regulation of Bax, Rb1, and CDKN1A levels in PC-3 cells.
          Picropodophyllin      Dysosma majoensis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [19]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model HLF CVCL_2947 Adult hepatocellular carcinoma Homo sapiens
PLC/PRF/5 CVCL_0485 Adult hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Picropodophyllin and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells.
          Platycodin D      Platycodon grandiflorum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [20]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Ubiquitination AKT1  Molecule Info 
Pathway MAP
                    In-vitro Model PC-3 CVCL_0035 Prostate carcinoma Homo sapiens
DU145 CVCL_0105 Prostate carcinoma Homo sapiens
                    In-vivo Model PC3 cells (shRNA-FOXO3a cells and MOCK cells) were injected subcutaneously into the left inguinal area of nude mice (BALB/c, nu/nu, male, 6-8 weeks old).
                    Experimental
                    Result(s)
The combination of Platycodin D and sorafenib may exert potent anti-cancer effects specifically via FOXO3a.
          Pterostilbene      Vitis vinifera     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [21]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Down-regulation Expression CCND1  Molecule Info 
Pathway MAP
Down-regulation Expression CDK2  Molecule Info 
Pathway MAP
Down-regulation Expression CDK4  Molecule Info 
Pathway MAP
Down-regulation Expression CDK6  Molecule Info 
Pathway MAP
Up-regulation Expression MAP1LC3A  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model NCI-N87 CVCL_1603 Gastric tubular adenocarcinoma Homo sapiens
MKN45 CVCL_0434 Gastric adenocarcinoma Homo sapiens
                    In-vivo Model N87 cells (3*105 cells) were suspended in 0.1 mL of PBS and inoculated subcutaneously into the right flank of five-week-old male BALB/c nude mice.
                    Experimental
                    Result(s)
PET enhanced sorafenib's antitumour effects against GAC through inhibiting cell proliferation, inducing autophagy and promoting apoptosis.
          Resveratrol      Gnetum parvifolium     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [22]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression APAF1  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Down-regulation Expression CCNB1  Molecule Info 
Pathway MAP
Down-regulation Expression CCND1  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Up-regulation Expression TP53  Molecule Info 
Pathway MAP
                    In-vitro Model MCF-7 CVCL_0031 Invasive breast carcinoma Homo sapiens
                    Experimental
                    Result(s)
Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage.
          Rottlerin      Mallotus philippinensis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [23]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Experimental
                    Result(s)
Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells.
          Silibinin      Carduus marianus     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [24]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Expression KLF4  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
Down-regulation Expression NANOG  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vitro Model SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
BEL-7402 CVCL_5492 Human hepatocellular carcinoma Homo sapiens
BEL-7404 CVCL_6568 Human hepatocellular carcinoma Homo sapiens
Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
MHCC97-H CVCL_4972 Adult hepatocellular carcinoma Homo sapiens
MHCC97-L CVCL_4973 Adult hepatocellular carcinoma Homo sapiens
HCCLM3 CVCL_6832 Adult hepatocellular carcinoma Homo sapiens
Hepa 1-6 CVCL_0327 Hepatocellular carcinoma of the mouse Mus musculus
H22 CVCL_H613 Hepatocellular carcinoma of the mouse Mus musculus
                    In-vivo Model Athymic nude mice or male C57BL/6 mice (aged 4-6 weeks and weighing 16-18g) were injected with Bel-7404 cells or Hepa 1-6 cells subcutaneously in the right foreleg (4*106 cells/mouse).
                    Experimental
                    Result(s)
Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT.
          Sulforaphane      Brassica oleracea     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [25]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression p105  Molecule Info 
Pathway MAP
                    In-vitro Model BxPC-3 CVCL_0186 Pancreatic ductal adenocarcinoma Homo sapiens
MIA PaCa-2 CVCL_0428 Pancreatic ductal adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
SF completely eradicated SO-induced NF-KappaB binding, which was associated with abrogated clonogenicity, spheroid formation, ALDH1 activity, migratory capacity, and induction of apoptosis.
          Tanshinone IIA      Salvia miltiorrhiza     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [26]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vitro Model Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Tan-IIA combined with sorafenib or SC-1 exerted synergistic cytotoxicity in HCC cells.
          Taxifolin      Larix gmelinii     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [27]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression FOXP3  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Sor-Tau combination led to FOXP3 down-regulation in hepatic cancer cells (HepG2) and improved therapeutic efficacy of sorafenib treated HCC.
          Triptolide      Tripterygium hypoglaucum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [28]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Activity p105  Molecule Info 
Pathway MAP
                    In-vitro Model Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
PLC/PRF/5 CVCL_0485 Adult hepatocellular carcinoma Homo sapiens
                    In-vivo Model Athymic nude mice were injected with 5*106 HuH-7 cells subcutaneously in the right flank in 100-mL aliquots mixed with Matrigel in 1:1 ratio.
                    Experimental
                    Result(s)
The combination of triptolide and sorafenib was superior to either drug alone in inducing apoptosis and decreasing viability, whereas triptolide alone was sufficient to decrease nuclear factor kappaB activity.
          Ursodeoxycholic acid      Homo sapiens     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [29]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
Huh-BAT Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Sorafenib and ursodeoxycholic combination is efficacious in treating hepatocellular carcinoma by inhibiting cell proliferation and inducing apoptosis through reactive oxygen species dependent activation of ERK and dephosphorylation of STAT3.
          Vitamin K      Medicago sativa     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [30]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CDH1  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Up-regulation Expression HGFAC  Molecule Info 
Pathway MAP
Up-regulation Expression MET  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Sorafenib and vitamin K can function synergistically to inhibit the migration and proliferation of HCC cells.
          Vitamin K2      Glycine max     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [31]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CDKN1A  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Combined treatment with sorafenib and vitamin K2 can work synergistically to inhibit the growth of hepatocellular carcinoma cells.
          Withaferin A      Withania somnifera     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [32]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model B-CPAP CVCL_0153 Thyroid gland carcinoma Homo sapiens
SW1736 CVCL_3883 Thyroid gland anaplastic carcinoma Homo sapiens
                    Experimental
                    Result(s)
Combination therapy with sorafenib + withaferin showed synergistic efficacy in papillary and anaplastic cancers in vitro with significant induction of apoptosis.
          Wogonin      Scutellaria amoena     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [33]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
BEL-7402 CVCL_5492 Human hepatocellular carcinoma Homo sapiens
Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
SMMC-7721 CVCL_0534 Hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition.
Target and Pathway
Target(s) Epidermal growth factor receptor (EGFR)  Molecule Info  [34]
Platelet-derived growth factor receptor beta (PDGFRB)  Molecule Info  [35]
Tyrosine-protein kinase Kit (KIT)  Molecule Info  [35]
Vascular endothelial growth factor receptor 2 (KDR)  Molecule Info  [35]
KEGG Pathway MAPK signaling pathway Click to Show/Hide
2 ErbB signaling pathway
3 Ras signaling pathway
4 Rap1 signaling pathway
5 Calcium signaling pathway
6 Cytokine-cytokine receptor interaction
7 HIF-1 signaling pathway
8 FoxO signaling pathway
9 Endocytosis
10 PI3K-Akt signaling pathway
11 Dorso-ventral axis formation
12 Focal adhesion
13 Adherens junction
14 Gap junction
15 Regulation of actin cytoskeleton
16 GnRH signaling pathway
17 Estrogen signaling pathway
18 Oxytocin signaling pathway
19 Epithelial cell signaling in Helicobacter pylori infection
20 Hepatitis C
21 Pathways in cancer
22 Proteoglycans in cancer
23 MicroRNAs in cancer
24 Pancreatic cancer
25 Endometrial cancer
26 Glioma
27 Prostate cancer
28 Melanoma
29 Bladder cancer
30 Non-small cell lung cancer
31 Central carbon metabolism in cancer
32 Choline metabolism in cancer
33 Hematopoietic cell lineage
34 Melanogenesis
35 Acute myeloid leukemia
36 HTLV-I infection
37 VEGF signaling pathway
NetPath Pathway IL4 Signaling Pathway Click to Show/Hide
2 EGFR1 Signaling Pathway
3 IL3 Signaling Pathway
4 KitReceptor Signaling Pathway
5 IL2 Signaling Pathway
Panther Pathway Cadherin signaling pathway Click to Show/Hide
2 EGF receptor signaling pathway
3 Angiogenesis
4 PDGF signaling pathway
5 VEGF signaling pathway
Pathway Interaction Database LPA receptor mediated events Click to Show/Hide
2 Signaling events mediated by PTP1B
3 Arf6 signaling events
4 Signaling events mediated by TCPTP
5 Thromboxane A2 receptor signaling
6 SHP2 signaling
7 Regulation of Telomerase
8 EGF receptor (ErbB1) signaling pathway
9 EGFR-dependent Endothelin signaling events
10 Posttranslational regulation of adherens junction stability and dissassembly
11 Direct p53 effectors
12 ErbB1 downstream signaling
13 Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling
14 E-cadherin signaling in keratinocytes
15 ErbB receptor signaling network
16 Internalization of ErbB1
17 Stabilization and expansion of the E-cadherin adherens junction
18 a6b1 and a6b4 Integrin signaling
19 Syndecan-3-mediated signaling events
20 C-MYB transcription factor network
21 Signaling events mediated by Stem cell factor receptor (c-Kit)
22 Beta3 integrin cell surface interactions
23 S1P3 pathway
24 Nectin adhesion pathway
25 S1P1 pathway
26 PDGFR-beta signaling pathway
27 Validated targets of C-MYC transcriptional repression
28 PDGF receptor signaling network
29 HIF-2-alpha transcription factor network
30 VEGF and VEGFR signaling network
31 Integrins in angiogenesis
32 Signaling events mediated by VEGFR1 and VEGFR2
33 Notch-mediated HES/HEY network
Reactome Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants Click to Show/Hide
2 SHC1 events in ERBB2 signaling
3 PLCG1 events in ERBB2 signaling
4 PIP3 activates AKT signaling
5 GRB2 events in EGFR signaling
6 GAB1 signalosome
7 SHC1 events in EGFR signaling
8 EGFR downregulation
9 GRB2 events in ERBB2 signaling
10 PI3K events in ERBB2 signaling
11 EGFR Transactivation by Gastrin
12 Constitutive Signaling by Aberrant PI3K in Cancer
13 Constitutive Signaling by EGFRvIII
14 RAF/MAP kinase cascade
15 Regulation of KIT signaling
16 Neurophilin interactions with VEGF and VEGFR
17 VEGF binds to VEGFR leading to receptor dimerization
18 Integrin cell surface interactions
19 EPHA-mediated growth cone collapse
20 VEGFA-VEGFR2 Pathway
21 VEGFR2 mediated cell proliferation
WikiPathways ErbB Signaling Pathway Click to Show/Hide
2 Regulation of Actin Cytoskeleton
3 EGF/EGFR Signaling Pathway
4 MAPK Signaling Pathway
5 Focal Adhesion
6 Aryl Hydrocarbon Receptor Pathway
7 Extracellular vesicle-mediated signaling in recipient cells
8 TCA Cycle Nutrient Utilization and Invasiveness of Ovarian Cancer
9 Hair Follicle Development: Cytodifferentiation (Part 3 of 3)
10 Bladder Cancer
11 Hair Follicle Development: Induction (Part 1 of 3)
12 Signaling by ERBB4
13 Signaling by ERBB2
14 Gastrin-CREB signalling pathway via PKC and MAPK
15 PIP3 activates AKT signaling
16 Nanoparticle-mediated activation of receptor signaling
17 Aryl Hydrocarbon Receptor
18 Spinal Cord Injury
19 Integrated Pancreatic Cancer Pathway
20 Gastric cancer network 2
21 AGE/RAGE pathway
22 Signaling Pathways in Glioblastoma
23 Arylhydrocarbon receptor (AhR) signaling pathway
24 miR-targeted genes in muscle cell - TarBase
25 miR-targeted genes in lymphocytes - TarBase
26 miR-targeted genes in epithelium - TarBase
27 Integrated Breast Cancer Pathway
28 Signaling by EGFR
29 L1CAM interactions
30 Kit receptor signaling pathway
31 Differentiation Pathway
32 Signaling by SCF-KIT
33 Cardiac Progenitor Differentiation
34 Osteoblast Signaling
35 PDGF Pathway
36 Signaling by PDGF
37 Nifedipine Activity
38 Signaling by VEGF
39 Angiogenesis
References
Reference 1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5711).
Reference 2 Amentoflavone Enhances the Therapeutic Efficacy of Sorafenib by Inhibiting Anti-apoptotic Potential and Potentiating Apoptosis in Hepatocellular Carcinoma In Vivo. Anticancer Res. 2018 Apr;38(4):2119-2125.
Reference 3 Investigation of possible effects of apigenin, sorafenib and combined applications on apoptosis and cell cycle in hepatocellular cancer cells. Gene. 2020 May 5;737:144428.
Reference 4 Effects of Sorafenib and Arsenic Trioxide on U937 and KG-1 Cell Lines: Apoptosis or Autophagy?. Cell J. 2020 Oct;22(3):253-262.
Reference 5 Artesunate promotes sensitivity to sorafenib in hepatocellular carcinoma. Biochem Biophys Res Commun. 2019 Oct 29;519(1):41-45.
Reference 6 SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell Death Dis. 2019 Sep 11;10(9):672.
Reference 7 Synergistic activity of sorafenib and betulinic acid against clonogenic activity of non-small cell lung cancer cells. Cancer Sci. 2017 Nov;108(11):2265-2272.
Reference 8 Synergistic anti-hepatoma effect of bufalin combined with sorafenib via mediating the tumor vascular microenvironment by targeting mTOR/VEGF signaling. Int J Oncol. 2018 Jun;52(6):2051-2060.
Reference 9 Capsaicin and sorafenib combination treatment exerts synergistic anti?hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep. 2018 Dec;40(6):3235-3248.
Reference 10 Chrysin-induced ERK1/2 Phosphorylation Enhances the Sensitivity of Human Hepatocellular Carcinoma Cells to Sorafenib. Anticancer Res. 2019 Feb;39(2):695-701.
Reference 11 Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 2020 Jul 22;11(7):6422-6432.
Reference 12 Synergistic Effects of Ellagic Acid and Sorafenib on Hepatocytes and Mitochondria Isolated from a Hepatocellular Carcinoma Rat Model. Nutr Cancer. 2020 Oct 8;1-9.
Reference 13 Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells. Oncotarget. 2015 Sep 29;6(29):28296-311.
Reference 14 Kaempferol-Mediated Sensitization Enhances Chemotherapeutic Efficacy of Sorafenib Against Hepatocellular Carcinoma: An In Silico and In Vitro Approach. Adv Pharm Bull. 2020 Jul;10(3):472-476.
Reference 15 Luteolin and sorafenib combination kills human hepatocellular carcinoma cells through apoptosis potentiation and JNK activation. Oncol Lett. 2018 Jul;16(1):648-653.
Reference 16 Protein Kinase B Inactivation Is Associated with Magnolol-Enhanced Therapeutic Efficacy of Sorafenib in Hepatocellular Carcinoma In Vitro and In Vivo. Cancers (Basel). 2019 Dec 30;12(1):87.
Reference 17 Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep. 2015 Apr;33(4):1994-2000.
Reference 18 Synergistic Effects of Nobiletin and Sorafenib Combination on Metastatic Prostate Cancer Cells. Nutr Cancer. 2019;71(8):1299-1312.
Reference 19 Picropodophyllin and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells. Oncol Lett. 2014 Nov;8(5):2023-2026.
Reference 20 Combined Anti-Cancer Effects of Platycodin D and Sorafenib on Androgen-Independent and PTEN-Deficient Prostate Cancer. Front Oncol. 2021 May 7;11:648985.
Reference 21 Pterostilbene enhances sorafenib's anticancer effects on gastric adenocarcinoma. J Cell Mol Med. 2020 Nov;24(21):12525-12536.
Reference 22 Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed Pharmacother. 2016 Dec;84:1906-1914.
Reference 23 Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80.
Reference 24 Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018 Aug 5;832:39-49.
Reference 25 Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 2010 Jun 15;70(12):5004-13.
Reference 26 Synergistic antitumor effects of tanshinone IIA and sorafenib or its derivative SC-1 in hepatocellular carcinoma cells. Onco Targets Ther. 2018 Mar 29;11:1777-1785.
Reference 27 Sorafenib- Taurine Combination Model for Hepatocellular Carcinoma Cells: Immunological Aspects. Asian Pac J Cancer Prev. 2019 Oct 1;20(10):3007-3013.
Reference 28 Sorafenib and triptolide as combination therapy for hepatocellular carcinoma. Surgery. 2014 Aug;156(2):270-9.
Reference 29 Synergistic effect of ursodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Int J Mol Med. 2018 Nov;42(5):2551-2559.
Reference 30 Synergistic effect of sorafenib and vitamin K on suppression of hepatocellular carcinoma cell migration and metastasis. Anticancer Res. 2015 Apr;35(4):1985-95.
Reference 31 Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells. Clinics (Sao Paulo). 2012 Sep;67(9):1093-9.
Reference 32 A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am J Surg. 2012 Dec;204(6):895-900; discussion 900-1.
Reference 33 Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncol Lett. 2017 Jun;13(6):5028-5034.
Reference 34 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
Reference 35 Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.Mol Cancer Ther.2008 Oct;7(10):3129-40.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China