Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Natural Product (NP) Details

General Information of the NP (ID: NP1541)
Name
6-shogaol
Synonyms
Shogaol; 555-66-8; [6]-Shogaol; (6)-Shogaol; enexasogaol; Trans-6-Shogaol; 23513-13-5; (E)-1-(4-hydroxy-3-methoxyphenyl)dec-4-en-3-one; UNII-83DNB5FIRF; 1-(4-Hydroxy-3-methoxyphenyl)-4-decen-3-one; CHEBI:10138; Shogaol (6-Shogaol); 1-(4-hydroxy-3-methoxyphenyl)dec-4-en-3-one; 83DNB5FIRF; CHEMBL25948; (4E)-1-(4-hydroxy-3-methoxyphenyl)dec-4-en-3-one; 4-DECEN-3-ONE, 1-(4-HYDROXY-3-METHOXYPHENYL)-; CCRIS 2038; 6-Shogaol (constituent of ginger) [DSC]; SCHEMBL49054; (E)-1-(4-Hydroxy-3- methoxyphenyl)dec-4-en-3-one; GTPL9773; MEGxp0_001217; Shogaol, >=90% (HPLC); 4-Decen-3-one, 1-(4-hydroxy-3-methoxyphenyl)-, (E); ACon1_001190; 4-Decen-3-one, 1-(4-hydroxy-3-methoxyphenyl)-, (4E)-; [6]-Shogaol, analytical standard; ZINC1531865; BDBM50237536; BDBM50240419; MFCD01736094; NSC752389; AKOS015888385; CCG-267210; CS-6175; MCULE-3275039845; NSC-752389; NCGC00169591-01; AS-55975; HY-14616; N2449; S9043; X1222; Y8376; A14648; C10494; 4-Decen-3-one, 1-(4-hydroxy-3-methoxyphenyl); 555S668; Q-100639; Q2746448; W-206831; BRD-K23331196-001-01-9; (E)-1-(4-Hydroxy-3-methoxy-phenyl)-dec-4-en-3-one; [(E)-1-(4-hydroxy-3-methoxyphenyl)-dec-4-en-3-one]; 1-(4-Hydroxy-3-methoxyphenyl)-4-dodecen-3-one, 9CI
    Click to Show/Hide
Species Origin Acacia confusa ...     Click to Show/Hide
Acacia confusa
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Acacia
Species: Acacia confusa
Abrus precatorius
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Abrus
Species: Abrus precatorius
Vachellia farnesiana
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Vachellia
Species: Vachellia farnesiana
Abelmoschus manihot
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malvales
Family: Malvaceae
Genus: Abelmoschus
Species: Abelmoschus manihot
Abrus pulchellus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Abrus
Species: Abrus pulchellus
Acalypha wilkesiana
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malpighiales
Family: Euphorbiaceae
Genus: Acalypha
Species: Acalypha wilkesiana
Eleutherococcus gracilistylus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Apiales
Family: Araliaceae
Genus: Eleutherococcus
Species: Eleutherococcus gracilistylus
Abutilon indicum
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malvales
Family: Malvaceae
Genus: Abutilon
Species: Abutilon indicum
Abelmoschus esculentus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malvales
Family: Malvaceae
Genus: Abelmoschus
Species: Abelmoschus esculentus
Zabelia biflora
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Dipsacales
Family: Caprifoliaceae
Genus: Zabelia
Species: Zabelia biflora
Abelmoschus moschatus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Malvales
Family: Malvaceae
Genus: Abelmoschus
Species: Abelmoschus moschatus
Abarema clypearia
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Fabales
Family: Fabaceae
Genus: Abarema
Species: Abarema clypearia
Disease Breast cancer [ICD-11: 2C60] Investigative [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C17H24O3
PubChem CID
5281794
Canonical SMILES
CCCCCC=CC(=O)CCC1=CC(=C(C=C1)O)OC
InChI
1S/C17H24O3/c1-3-4-5-6-7-8-15(18)11-9-14-10-12-16(19)17(13-14)20-2/h7-8,10,12-13,19H,3-6,9,11H2,1-2H3/b8-7+
InChIKey
OQWKEEOHDMUXEO-BQYQJAHWSA-N
CAS Number
CAS 555-66-8
Herb ID
HBIN012818
ETMC ID
2551
SymMap ID
SMIT00160
TCMSP ID
MOL002495
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Drug(s) Whose Efficacy can be Enhanced by This NP
          5-fluorouracil      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression ATG7  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Up-regulation Expression BECN1  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
                    In-vitro Model SW480 CVCL_0546 Colon adenocarcinoma Homo sapiens
SW620 CVCL_0547 Colon adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
6-Shogaol enhances the anticancer effect of 5-fluorouracil via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions.
          Gemcitabine      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression CCND1  Molecule Info 
Pathway MAP
Down-regulation Expression COX-2  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation RELA  Molecule Info 
Pathway MAP
Down-regulation Expression XIAP  Molecule Info 
Pathway MAP
                    In-vitro Model PANC-1 CVCL_0480 Pancreatic ductal adenocarcinoma Homo sapiens
BxPC-3 CVCL_0186 Pancreatic ductal adenocarcinoma Homo sapiens
                    In-vivo Model Male BALB/c immunodeficient nude mice were injected with PANC-1 cells (1*107) with matrigel (100 uL) to the right flank of each mice.
                    Experimental
                    Result(s)
Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-kappaB signaling by 6-shogaol.
    β. A List of Drug(s) Whose Resistance can be Reversed by This NP
          TNF-related apoptosis inducing ligand      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Expression BIRC5  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation ERK2  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation JNK1  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Up-regulation Expression TRAIL-R2  Molecule Info 
Pathway MAP
                    In-vitro Model HCT 116 CVCL_0291 Colon carcinoma Homo sapiens
Caco-2 CVCL_0025 Colon adenocarcinoma Homo sapiens
SW620 CVCL_0547 Colon adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
Shogaol overcomes TRAIL resistance in colon cancer cells via inhibiting of survivin.
Target and Pathway
Target(s) DNA-binding factor KBF1 (p105)  Molecule Info  [5]
Eukaryotic translation initiation factor 2A (EIF2A)  Molecule Info  [6]
PPAR-gamma (PPARG)  Molecule Info  [5]
KEGG Pathway PPAR signaling pathway Click to Show/Hide
2 AMPK signaling pathway
3 Osteoclast differentiation
4 Huntington's disease
5 Pathways in cancer
6 Transcriptional misregulation in cancer
7 Thyroid cancer
8 MAPK signaling pathway
9 Ras signaling pathway
10 cAMP signaling pathway
11 Chemokine signaling pathway
12 NF-kappa B signaling pathway
13 HIF-1 signaling pathway
14 Sphingolipid signaling pathway
15 PI3K-Akt signaling pathway
16 Apoptosis
17 Toll-like receptor signaling pathway
18 NOD-like receptor signaling pathway
19 RIG-I-like receptor signaling pathway
20 Cytosolic DNA-sensing pathway
21 T cell receptor signaling pathway
22 B cell receptor signaling pathway
23 TNF signaling pathway
24 Neurotrophin signaling pathway
25 Prolactin signaling pathway
26 Adipocytokine signaling pathway
27 Non-alcoholic fatty liver disease (NAFLD)
28 Cocaine addiction
29 Epithelial cell signaling in Helicobacter pylori infection
30 Shigellosis
31 Salmonella infection
32 Pertussis
33 Legionellosis
34 Leishmaniasis
35 Chagas disease (American trypanosomiasis)
36 Toxoplasmosis
37 Amoebiasis
38 Tuberculosis
39 Hepatitis C
40 Hepatitis B
41 Measles
42 Influenza A
43 HTLV-I infection
44 Herpes simplex infection
45 Epstein-Barr virus infection
46 Viral carcinogenesis
47 MicroRNAs in cancer
48 Pancreatic cancer
49 Prostate cancer
50 Chronic myeloid leukemia
51 Acute myeloid leukemia
52 Small cell lung cancer
53 Inflammatory bowel disease (IBD)
NetPath Pathway IL1 Signaling Pathway Click to Show/Hide
2 TGF_beta_Receptor Signaling Pathway
3 Leptin Signaling Pathway
4 IL5 Signaling Pathway
5 TCR Signaling Pathway
6 IL2 Signaling Pathway
7 TNFalpha Signaling Pathway
Panther Pathway CCKR signaling map ST Click to Show/Hide
2 Apoptosis signaling pathway
3 T cell activation
Pathwhiz Pathway Intracellular Signalling Through Adenosine Receptor A2a and Adenosine Click to Show/Hide
2 Intracellular Signalling Through Adenosine Receptor A2b and Adenosine
Pathway Interaction Database Noncanonical Wnt signaling pathway Click to Show/Hide
2 Calcineurin-regulated NFAT-dependent transcription in lymphocytes
3 Signaling events mediated by HDAC Class I
4 RXR and RAR heterodimerization with other nuclear receptor
5 Regulation of retinoblastoma protein
6 Fc-epsilon receptor I signaling in mast cells
7 BCR signaling pathway
8 LPA receptor mediated events
9 Atypical NF-kappaB pathway
10 Canonical NF-kappaB pathway
11 CD40/CD40L signaling
12 IL12-mediated signaling events
13 Alternative NF-kappaB pathway
14 Osteopontin-mediated events
15 Angiopoietin receptor Tie2-mediated signaling
16 Regulation of Telomerase
17 IL1-mediated signaling events
18 Glucocorticoid receptor regulatory network
19 TNF receptor signaling pathway
20 IL2 signaling events mediated by PI3K
21 Ceramide signaling pathway
22 amb2 Integrin signaling
23 IL23-mediated signaling events
24 HIV-1 Nef: Negative effector of Fas and TNF-alpha
25 EPO signaling pathway
Reactome PPARA activates gene expression Click to Show/Hide
2 Transcriptional regulation of white adipocyte differentiation
3 Nuclear Receptor transcription pathway
4 Activation of NF-kappaB in B cells
5 RIP-mediated NFkB activation via ZBP1
6 Regulated proteolysis of p75NTR
7 NF-kB is activated and signals survival
8 Senescence-Associated Secretory Phenotype (SASP)
9 FCERI mediated NF-kB activation
10 DEx/H-box helicases activate type I IFN and inflammatory cytokines production
11 TAK1 activates NFkB by phosphorylation and activation of IKKs complex
12 Interleukin-1 processing
13 IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) (via TLR)
14 IkBA variant leads to EDA-ID
15 CLEC7A (Dectin-1) signaling
16 CD209 (DC-SIGN) signaling
17 CLEC7A/inflammasome pathway
18 MAP3K8 (TPL2)-dependent MAPK1/3 activation
19 TRAF6 mediated NF-kB activation
WikiPathways Wnt Signaling Pathway Netpath Click to Show/Hide
2 Nuclear Receptors in Lipid Metabolism and Toxicity
3 Differentiation of white and brown adipocyte
4 Regulation of Lipid Metabolism by Peroxisome proliferator-activated receptor alpha (PPARalpha)
5 Transcriptional Regulation of White Adipocyte Differentiation
6 Adipogenesis
7 SREBP signalling
8 Nuclear Receptors
9 Toll-like receptor signaling pathway
10 DNA Damage Response (only ATM dependent)
11 SIDS Susceptibility Pathways
12 TCR Signaling Pathway
13 Notch Signaling Pathway
14 TGF Beta Signaling Pathway
15 Oxidative Stress
16 IL-4 Signaling Pathway
17 Apoptosis Modulation by HSP70
18 MAPK Signaling Pathway
19 Myometrial Relaxation and Contraction Pathways
20 IL1 and megakaryotyces in obesity
21 Apoptosis-related network due to altered Notch3 in ovarian cancer
22 Hair Follicle Development: Cytodifferentiation (Part 3 of 3)
23 Hair Follicle Development: Organogenesis (Part 2 of 3)
24 Hair Follicle Development: Induction (Part 1 of 3)
25 Selenium Metabolism and Selenoproteins
26 Cardiac Hypertrophic Response
27 Cytosolic sensors of pathogen-associated DNA
28 Fc epsilon receptor (FCERI) signaling
29 Signaling by the B Cell Receptor (BCR)
30 TAK1 activates NFkB by phosphorylation and activation of IKKs complex
31 Structural Pathway of Interleukin 1 (IL-1)
32 EBV LMP1 signaling
33 Aryl Hydrocarbon Receptor
34 T-Cell Receptor and Co-stimulatory Signaling
35 Apoptosis
36 Quercetin and Nf-kB/ AP-1 Induced Cell Apoptosis
37 BDNF signaling pathway
38 Integrated Pancreatic Cancer Pathway
39 Oncostatin M Signaling Pathway
40 Corticotropin-releasing hormone
41 AGE/RAGE pathway
42 TNF alpha Signaling Pathway
43 B Cell Receptor Signaling Pathway
44 TSLP Signaling Pathway
45 IL17 signaling pathway
46 Neural Crest Differentiation
47 TWEAK Signaling Pathway
48 Leptin signaling pathway
49 RANKL/RANK Signaling Pathway
50 Integrated Breast Cancer Pathway
51 Signalling by NGF
52 IL-1 signaling pathway
53 TCR signaling
54 RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways
55 Interleukin-1 signaling
56 Interleukin-1 processing
57 Apoptosis Modulation and Signaling
58 Folate Metabolism
59 TFs Regulate miRNAs related to cardiac hypertrophy
60 MicroRNAs in cardiomyocyte hypertrophy
61 Vitamin B12 Metabolism
62 Selenium Micronutrient Network
63 Regulation of toll-like receptor signaling pathway
64 Osteopontin Signaling
References
Reference 1 6-Shogaol suppresses the growth of breast cancer cells by inducing apoptosis and suppressing autophagy via targeting notch signaling pathway. Biomed Pharmacother. 2020 Aug;128:110302.
Reference 2 6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement Med Ther. 2020 May 11;20(1):141.
Reference 3 Antitumor activity of gemcitabine can be potentiated in pancreatic cancer through modulation of TLR4/NF-kappaB signaling by 6-shogaol. AAPS J. 2014 Mar;16(2):246-57.
Reference 4 Shogaol overcomes TRAIL resistance in colon cancer cells via inhibiting of survivin. Tumour Biol. 2015 Nov;36(11):8819-29.
Reference 5 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor Gamma (PPARGamma). Cancer Lett. 2013 Aug 9;336(1):127-39.
Reference 6 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2Alpha. Mol Cancer. 2013 Nov 12;12(1):135.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China