Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Drug Details

General Information of the Drug (ID: DR8244)
Name
Imatinib
Synonyms
Imatinib-d8; Imatinib D8; [d8]-Imatinib; 1092942-82-9; DTXSID70649425; J-002260
    Click to Show/Hide
Molecular Type
Small molecule
Disease Mantle cell lymphoma [ICD-11: 2A85] Approved [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C29H31N7O
PubChem CID
5291
Canonical SMILES
CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC=CC(=N4)C5=CN=CC=C5
InChI
1S/C29H31N7O/c1-21-5-10-25(18-27(21)34-29-31-13-11-26(33-29)24-4-3-12-30-19-24)32-28(37)23-8-6-22(7-9-23)20-36-16-14-35(2)15-17-36/h3-13,18-19H,14-17,20H2,1-2H3,(H,32,37)(H,31,33,34)
InChIKey
KTUFNOKKBVMGRW-UHFFFAOYSA-N
CAS Number
CAS 152459-95-5
GDSC
Imatinib
TTD Drug ID
D0R6RU
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Natural Product(s) Able to Enhance the Efficacy of This Drug
          Apicidin      Fusarium sp.     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABL  Molecule Info 
Pathway MAP
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades.
          Arsenic trioxide      Realgar and orpiment     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABL  Molecule Info 
Pathway MAP
Down-regulation Expression BCR  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
As2O3 in combination with imatinib showed favorable cytotoxicity and proapoptotic activity in chronic myelogenous leckemia.
          Costunolide      Magnolia sieboldii     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway.
          Curcumin      Hellenia speciosa     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [5]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABL  Molecule Info 
Pathway MAP
Down-regulation Expression BCR  Molecule Info 
Pathway MAP
                    In-vitro Model SUP-B15 CVCL_0103 B acute lymphoblastic leukemia Homo sapiens
THP-1 CVCL_0006 Childhood acute monocytic leukemia Homo sapiens
ARAC-8C CVCL_GZ09 T acute lymphoblastic leukemia Homo sapiens
                    In-vivo Model Female BALB/c null mice were injected with 107 SUP-B15 cells via tail vein.
                    Experimental
                    Result(s)
Curcumin potentiates the anti-leukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia.
          Daunorubicin      Streptomyces peucetius     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [6]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Experimental
                    Result(s)
The combination of IM with a standard "3+7" regiment was well tolerated and provided a high response rate.
          Flavopiridol      Dysoxylum binectariferum     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [7]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Up-regulation Expression DIABLO  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
                    Biological
                    Regulation
Up-regulation Cytochrome c release
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
U-937 CVCL_0007 Adult acute monocytic leukemia Homo sapiens
HL-60 CVCL_0002 Adult acute myeloid leukemia Homo sapiens
Jurkat CVCL_0065 T acute lymphoblastic leukemia Homo sapiens
LAMA-84 CVCL_0388 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells.
          Galangin      Plantago major     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [8]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
KCL-22 CVCL_2091 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Galangin caused a decrease in Bcl-2 levels and markedly increased the apoptotic activity of imatinib both in sensitive or imatinib-resistant Bcr-Abl+ cell lines.
          Gossypol      Gossypium herbaceum     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [9]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-xL  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
                    Biological
                    Regulation
Up-regulation Cytochrome c release
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Gossypol and its combination with imatinib induce apoptosis in human chronic myeloid leukemic cells.
          Honokiol      Magnolia officinalis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [10]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model NB4 CVCL_0005 Acute promyelocytic leukemia Homo sapiens
K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells.
          Luteolin      Abrus precatorius     Click to Show/Hide the Molecular Data of This NP
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [11]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Combination treatment may provide better outcomes in terms of cytotoxicity and thus reduce the dosages of imatinib used.
          Neferine      Nelumbo nucifera     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [12]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation MCL1  Molecule Info 
Pathway MAP
                    In-vitro Model Bone marrow mononuclear cells derived from chronic myeloid leukemia patients Chronic myeloid leukemia Homo sapiens
                    Experimental
                    Result(s)
These results suggest that neferine might be a potential imatinib sensitizer in CML treatment.
          Oridonin      Isodon rubescens     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [13]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression AKT1  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Up-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Expression c-RAF  Molecule Info 
Pathway MAP
Down-regulation Expression JTK8  Molecule Info 
Pathway MAP
Down-regulation Expression MEK1  Molecule Info 
Pathway MAP
Down-regulation Expression mTOR  Molecule Info 
Pathway MAP
Down-regulation Expression STAT5B  Molecule Info 
Pathway MAP
                    In-vitro Model SUP-B15 CVCL_0103 B acute lymphoblastic leukemia Homo sapiens
                    Experimental
                    Result(s)
Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway.
          Resveratrol      Gnetum parvifolium     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [14]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Treatment with resveratrol (concentration-dependent) and imatinib mesylate showed significantly greater inhibition of K562 cell growth and a higher apoptosis rate of K562 cells than imatinib mesylate medication alone and the control group.
          Rottlerin      Mallotus philippinensis     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [15]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta.
          Sulforaphane      Brassica oleracea     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [16]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABL  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Down-regulation Expression CTNNB1  Molecule Info 
Pathway MAP
Down-regulation Expression GSTP1  Molecule Info 
Pathway MAP
Up-regulation Expression PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model Ku812 CVCL_0379 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/Beta-catenin function.
          Thymoquinone      Nigella sativa     Click to Show/Hide the Molecular Data of This NP
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [17]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression ABCB1  Molecule Info 
Pathway MAP
Down-regulation Expression ABCG2  Molecule Info 
Pathway MAP
Down-regulation Expression SLC22A1  Molecule Info 
Pathway MAP
                    In-vitro Model HCT 116 CVCL_0291 Colon carcinoma Homo sapiens
                    Experimental
                    Result(s)
TQ potentiates IM efficacy on HCT116 cells via uptake/efflux genes modulation.
    β. A List of Natural Product(s) Able to Reverse the Resistance of This Drug
          Betulinic Acid      Rubus alceifolius     Click to Show/Hide the Molecular Data of This NP
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [18]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Biological
                    Regulation
Up-regulation HDAC3 ubiquitination and degradation
                    In-vitro Model K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
                    Experimental
                    Result(s)
Betulinic acid restores imatinib sensitivity in BCR-ABL1 kinase-independent, imatinib-resistant chronic myeloid leukemia by increasing HDAC3 ubiquitination and degradation.
          Gambogic acid      Garcinia morella     Click to Show/Hide the Molecular Data of This NP
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [19]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation ABL  Molecule Info 
Pathway MAP
Up-regulation Expression AIFM1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation BCR  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP8  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP9  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation CRKL  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK2  Molecule Info 
Pathway MAP
Down-regulation Expression MCL1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT5B  Molecule Info 
Pathway MAP
Down-regulation Expression XIAP  Molecule Info 
Pathway MAP
                    Biological
                    Regulation
Up-regulation Cytochrome c release
                    In-vitro Model KBM-5 CVCL_0373 Chronic myelogenous leukemia Homo sapiens
K-562 CVCL_0004 Chronic myelogenous leukemia Homo sapiens
KBM5-T315I Chronic myeloid leukemia Homo sapiens
                    In-vivo Model A total of 3 * 107 of KBM5 or KBM5-T315I cells were inoculated subcutaneously on the flanks of 5-week-old male nude mice.
                    Experimental
                    Result(s)
Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation.
Target and Pathway
Target(s) Fusion protein Bcr-Abl (Bcr-Abl)  Molecule Info  [20]
Tyrosine-protein kinase Kit (KIT)  Molecule Info  [21]
Tyrosine-protein kinase SYK (SYK)  Molecule Info  [21]
KEGG Pathway Ras signaling pathway Click to Show/Hide
2 Rap1 signaling pathway
3 Cytokine-cytokine receptor interaction
4 Endocytosis
5 PI3K-Akt signaling pathway
6 Hematopoietic cell lineage
7 Melanogenesis
8 Pathways in cancer
9 Acute myeloid leukemia
10 Central carbon metabolism in cancer
11 NF-kappa B signaling pathway
12 Osteoclast differentiation
13 Platelet activation
14 Natural killer cell mediated cytotoxicity
15 B cell receptor signaling pathway
16 Fc epsilon RI signaling pathway
17 Fc gamma R-mediated phagocytosis
18 Tuberculosis
19 Epstein-Barr virus infection
20 Viral carcinogenesis
NetPath Pathway IL3 Signaling Pathway Click to Show/Hide
2 IL4 Signaling Pathway
3 KitReceptor Signaling Pathway
Panther Pathway B cell activation Click to Show/Hide
Pathwhiz Pathway Fc Epsilon Receptor I Signaling in Mast Cells Click to Show/Hide
Pathway Interaction Database C-MYB transcription factor network Click to Show/Hide
2 Signaling events mediated by Stem cell factor receptor (c-Kit)
3 Fc-epsilon receptor I signaling in mast cells
4 BCR signaling pathway
5 GMCSF-mediated signaling events
6 Atypical NF-kappaB pathway
7 Osteopontin-mediated events
8 FAS (CD95) signaling pathway
9 Thromboxane A2 receptor signaling
10 IL2-mediated signaling events
11 Class I PI3K signaling events
12 Alpha-synuclein signaling
Reactome PIP3 activates AKT signaling Click to Show/Hide
2 Regulation of KIT signaling
3 Constitutive Signaling by Aberrant PI3K in Cancer
4 RAF/MAP kinase cascade
5 GPVI-mediated activation cascade
6 FCGR activation
7 Regulation of actin dynamics for phagocytic cup formation
8 Role of phospholipids in phagocytosis
9 DAP12 signaling
10 Fc epsilon receptor (FCERI) signaling
11 Role of LAT2/NTAL/LAB on calcium mobilization
12 FCERI mediated MAPK activation
13 FCERI mediated Ca+2 mobilization
14 Integrin alphaIIb beta3 signaling
15 Interleukin-2 signaling
16 CLEC7A (Dectin-1) signaling
17 Dectin-2 family
18 Regulation of signaling by CBL
19 Antigen activates B Cell Receptor (BCR) leading to generation of second messengers
WikiPathways Kit receptor signaling pathway Click to Show/Hide
2 Differentiation Pathway
3 Signaling by SCF-KIT
4 PIP3 activates AKT signaling
5 Cardiac Progenitor Differentiation
6 miR-targeted genes in muscle cell - TarBase
7 miR-targeted genes in lymphocytes - TarBase
8 miR-targeted genes in epithelium - TarBase
9 IL-2 Signaling Pathway
10 IL-3 Signaling Pathway
11 Fc epsilon receptor (FCERI) signaling
12 Signaling by the B Cell Receptor (BCR)
13 Interleukin-2 signaling
14 Fcgamma receptor (FCGR) dependent phagocytosis
15 DAP12 interactions
16 B Cell Receptor Signaling Pathway
17 RANKL/RANK Signaling Pathway
18 Integrin alphaIIb beta3 signaling
19 GPVI-mediated activation cascade
20 Regulation of toll-like receptor signaling pathway
21 IL-5 Signaling Pathway
References
Reference 1 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
Reference 2 Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br J Haematol. 2004 Jan;124(2):166-78.
Reference 3 In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol. 2002 Jul;30(7):729-37.
Reference 4 Costunolide promotes imatinib-induced apoptosis in chronic myeloid leukemia cells via the Bcr/Abl-Stat5 pathway. Phytother Res. 2018 Sep;32(9):1764-1769.
Reference 5 Curcumin potentiates the anti-leukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia. Int J Biochem Cell Biol. 2015 Aug;65:1-11.
Reference 6 The addition of daunorubicin to imatinib mesylate in combination with cytarabine improves the response rate and the survival of patients with myeloid blast crisis chronic myelogenous leukemia (AFR01 study). Leuk Res. 2011 Jun;35(6):777-82.
Reference 7 Flavopiridol potentiates STI571-induced mitochondrial damage and apoptosis in BCR-ABL-positive human leukemia cells. Clin Cancer Res. 2002 Sep;8(9):2976-84.
Reference 8 Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett. 2008 Jul 8;265(2):289-97.
Reference 9 (-)Gossypol and its combination with imatinib induce apoptosis in human chronic myeloid leukemic cells. Leuk Lymphoma. 2007 Nov;48(11):2204-12.
Reference 10 Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells. Toxicol Mech Methods. 2010 Jun;20(5):234-41.
Reference 11 Cytotoxic Effects of Some Flavonoids and Imatinib on the K562 Chronic Myeloid Leukemia Cell Line: Data Analysis Using the Combination Index Method. Balkan Med J. 2019 Feb 28;36(2):96-105.
Reference 12 Neferine in the Lotus Plumule Potentiates the Antitumor Effect of Imatinib in Primary Chronic Myeloid Leukemia Cells In Vitro. J Food Sci. 2019 Apr;84(4):904-910.
Reference 13 Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway. Cancer Biol Ther. 2012 Nov;13(13):1244-54.
Reference 14 Inhibition of human chronic myelogenous leukemia K562 cell growth following combination treatment with resveratrol and imatinib mesylate. Genet Mol Res. 2015 Jun 11;14(2):6413-8.
Reference 15 Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta. Oncogene. 2007 May 10;26(21):2975-87.
Reference 16 Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/Beta-catenin function. J Agric Food Chem. 2012 Jul 18;60(28):7031-9.
Reference 17 Thymoquinone chemosensitizes human colorectal cancer cells to imatinib via uptake/efflux genes modulation. Clin Exp Pharmacol Physiol. 2021 Jun;48(6):911-920.
Reference 18 Betulinic acid restores imatinib sensitivity in BCR-ABL1 kinase-independent, imatinib-resistant chronic myeloid leukemia by increasing HDAC3 ubiquitination and degradation. Ann N Y Acad Sci. 2020 May;1467(1):77-93.
Reference 19 Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res. 2014 Jan 1;20(1):151-63.
Reference 20 STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol. 2000 Dec;1:207-11.
Reference 21 DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China