Skip to main content
  •   Home
  •   Download
  •   Manual
  •   Contact

Natural Product (NP) Details

General Information of the NP (ID: NP8797)
Name
Celastrol
Synonyms
Tripterin; Tripterine; Celastrol, Celastrus scandens; (2R,4aS,6aR,6aS,14aS,14bR)-10-hydroxy-2,4a,6a,6a,9,14a-hexamethyl-11-oxo-1,3,4,5,6,13,14,14b-octahydropicene-2-carboxylic acid; (2R,4aS,6aS,12bR,14aS,14bR)-10-hydroxy-2,4a,6a,9,12b,14a-hexamethyl-11-oxo-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-tetradecahydropicene-2-carboxylic acid; 3-Hydroxy-24-nor-2-oxo-1(10),3,5,7-friedelatetraen-29-oic Acid
    Click to Show/Hide
Species Origin Celastrus orbiculatus ...     Click to Show/Hide
Celastrus orbiculatus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Celastrales
Family: Celastraceae
Genus: Celastrus
Species: Celastrus orbiculatus
Celastrus scandens
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Celastrales
Family: Celastraceae
Genus: Celastrus
Species: Celastrus scandens
Tripterygium regelii
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Celastrales
Family: Celastraceae
Genus: Tripterygium
Species: Tripterygium regelii
Celastrus strigillosus
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Celastrales
Family: Celastraceae
Genus: Celastrus
Species: Celastrus strigillosus
Crossopetalum gaumeri
Kingdom: Viridiplantae
Phylum: Streptophyta
Class: Magnoliopsida
Order: Celastrales
Family: Celastraceae
Genus: Crossopetalum
Species: Crossopetalum gaumeri
Disease Amyotrophic lateral sclerosis [ICD-11: 8B60] Preclinical [1]
Structure
Click to Download Mol
2D MOL

3D MOL

    Click to Show/Hide the Molecular Information and External Link(s) of This Natural Product
Formula
C29H38O4
PubChem CID
122724
Canonical SMILES
CC1=C(C(=O)C=C2C1=CC=C3C2(CCC4(C3(CCC5(C4CC(CC5)(C)C(=O)O)C)C)C)C)O
InChI
1S/C29H38O4/c1-17-18-7-8-21-27(4,19(18)15-20(30)23(17)31)12-14-29(6)22-16-26(3,24(32)33)10-9-25(22,2)11-13-28(21,29)5/h7-8,15,22,31H,9-14,16H2,1-6H3,(H,32,33)/t22-,25-,26-,27+,28-,29+/m1/s1
InChIKey
KQJSQWZMSAGSHN-JJWQIEBTSA-N
CAS Number
CAS 34157-83-0
Herb ID
HBIN020031
ETMC ID
7044
SymMap ID
SMIT14614
TTD Drug ID
D0I9XH
Combinatorial Therapeutic Effect(s) Validated Clinically or Experimentally
    α. A List of Drug(s) Whose Efficacy can be Enhanced by This NP
          Temozolomide      Brain cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [2]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation JNK1  Molecule Info 
Pathway MAP
Up-regulation Phosphorylation NFKBIA  Molecule Info 
Pathway MAP
Up-regulation Expression p105  Molecule Info 
Pathway MAP
                    In-vitro Model SK-MEL-19 CVCL_6025 Cutaneous melanoma Homo sapiens
SK-MEL-100 CVCL_6067 Cutaneous melanoma Homo sapiens
SK-MEL-173 CVCL_6090 Melanoma Homo sapiens
SK-MEL-192 CVCL_6101 Melanoma Homo sapiens
                    Experimental
                    Result(s)
Celastrol synergistically enhances temozolomide cytotoxicity in melanoma cells. Celastrol treatment increased the levels of ubiquitinated proteins, reduced the levels of tumor necrosis factor-alpha-induced IkappaB phosphorylation, and blocked NF-kappaB translocation to the nucleus.
          Apatinib      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [3]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep 3B2.1-7 CVCL_0326 Childhood hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
The combination of Apatinib and Tripterine significantly inhibited the proliferation, migration and invasion ability and promoted the apoptosis of Hep3B cells by downregulating the expression of p-Akt and p-ERK, and upregulating the expression of Caspase-3 and Bax.
          Lapatinib      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Expression c-RAF  Molecule Info 
Pathway MAP
Down-regulation Expression HER2  Molecule Info 
Pathway MAP
Down-regulation Expression HSPA4  Molecule Info 
Pathway MAP
                    In-vitro Model SK-BR-3 CVCL_0033 Breast adenocarcinoma Homo sapiens
BT-474 CVCL_0179 Invasive breast carcinoma Homo sapiens
MCF-7 CVCL_0031 Invasive breast carcinoma Homo sapiens
BT-20 CVCL_0178 Invasive breast carcinoma Homo sapiens
MCF-10A CVCL_0598 Healthy Homo sapiens
                    In-vivo Model Four to six week old female NOD-SCID mice received sub-cutaneous 17Beta-estradiol pellet (0.72 mg/day), 2 weeks prior to injection of 5 * 106 BT-474 cells resuspended in 4% Matrigel.
                    Experimental
                    Result(s)
Celastrol strongly synergized with ErbB2-targeted therapeutics Lapatinib, producing higher cytotoxicity with substantially lower doses of Celastrol.
          Trastuzumab      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [4]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Expression c-RAF  Molecule Info 
Pathway MAP
Down-regulation Expression HER2  Molecule Info 
Pathway MAP
Down-regulation Expression HSPA4  Molecule Info 
Pathway MAP
                    In-vitro Model SK-BR-3 CVCL_0033 Breast adenocarcinoma Homo sapiens
BT-474 CVCL_0179 Invasive breast carcinoma Homo sapiens
MCF-7 CVCL_0031 Invasive breast carcinoma Homo sapiens
BT-20 CVCL_0178 Invasive breast carcinoma Homo sapiens
MCF-10A CVCL_0598 Healthy Homo sapiens
                    In-vivo Model Four to six week old female NOD-SCID mice received sub-cutaneous 17Beta-estradiol pellet (0.72 mg/day), 2 weeks prior to injection of 5 * 106 BT-474 cells resuspended in 4% Matrigel.
                    Experimental
                    Result(s)
Celastrol strongly synergized with ErbB2-targeted therapeutics Trastuzumab, producing higher cytotoxicity with substantially lower doses of Celastrol.
          TNF-related apoptosis inducing ligand      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Augmenting Drug Sensitivity     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [5]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Activity CASP3  Molecule Info 
Pathway MAP
Up-regulation Activity CASP8  Molecule Info 
Pathway MAP
Up-regulation Expression MAP1LC3A  Molecule Info 
Pathway MAP
Up-regulation Expression SQSTM1  Molecule Info 
Pathway MAP
                    In-vitro Model A-549 CVCL_0023 Lung adenocarcinoma Homo sapiens
HCC15 CVCL_2057 Lung squamous cell carcinoma Homo sapiens
Calu-3 CVCL_0609 Lung adenocarcinoma Homo sapiens
                    Experimental
                    Result(s)
Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL-induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species.
          TRAIL/Apo2L      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [6]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CASP8  Molecule Info 
Pathway MAP
Up-regulation Expression CASP9  Molecule Info 
Pathway MAP
Up-regulation Expression PARP1  Molecule Info 
Pathway MAP
                    In-vitro Model OVCAR-8 CVCL_1629 Ovarian serous adenocarcinoma Homo sapiens
SW620 CVCL_0547 Colon adenocarcinoma Homo sapiens
PLA-801D CVCL_7110 Lung giant cell carcinoma Homo sapiens
                    Experimental
                    Result(s)
Synergistic anticancer capabilities achieved by combining TRAIL/APO-2L and celastrol.
          Bortezomib      Mantle cell lymphoma     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [7]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression CXCR4  Molecule Info 
Pathway MAP
Down-regulation Expression MMP-9  Molecule Info 
Pathway MAP
Down-regulation Expression p105  Molecule Info 
Pathway MAP
                    In-vitro Model U266B1 CVCL_0566 Plasma cell myeloma Homo sapiens
NCI-H929 CVCL_1600 Plasma cell myeloma Homo sapiens
KMS-11 CVCL_2989 Plasma cell myeloma Homo sapiens
                    In-vivo Model Male athymic balb/c nude mice were implanted with 2 * 106 cells with Human MM U266 cell lines subcutaneously.
                    Experimental
                    Result(s)
Celastrol attenuates the invasion and migration and augments the anticancer effects of bortezomib in a xenograft mouse model of multiple myeloma.
          Vorinostat      Mycosis fungoides     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [8]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CDH1  Molecule Info 
Pathway MAP
Up-regulation Expression p105  Molecule Info 
Pathway MAP
                    In-vitro Model PLA-801D CVCL_7110 Lung giant cell carcinoma Homo sapiens
                    In-vivo Model Human lung cancer xenografts were established by subcutaneously inoculating 5*106 95-D cells into nude mice.
                    Experimental
                    Result(s)
The synergistic anticancer effects of celastrol and SAHA was demonstrated due to their reciprocal sensitisation, which was simultaneously regulated by NF-kappaB and E-cadherin.
          ABT-737      Ovarian cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [9]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression BAX  Molecule Info 
Pathway MAP
Down-regulation Expression BCL-2  Molecule Info 
Pathway MAP
Up-regulation Cleavage CASP3  Molecule Info 
Pathway MAP
Up-regulation Cleavage PARP1  Molecule Info 
Pathway MAP
Up-regulation Expression PMAIP1  Molecule Info 
Pathway MAP
                    In-vitro Model Hep-G2 CVCL_0027 Hepatocellular carcinoma Homo sapiens
BEL-7402 CVCL_5492 Human hepatocellular carcinoma Homo sapiens
                    Experimental
                    Result(s)
Celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells by upregulating Noxa.
          Carboplatin      Ovarian cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [10]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Induction Degradation FANCD2  Molecule Info 
Pathway MAP
                    In-vitro Model HSJD-DIPG-07 CVCL_VU70 Diffuse intrinsic pontine glioma Homo sapiens
JHH-DIPG-1 CVCL_IT47 Diffuse intrinsic pontine glioma Homo sapiens
SU-DIPG-IV CVCL_IT39 Diffuse intrinsic pontine glioma Homo sapiens
SU-pcGBM-2 CVCL_IT42 Glioblastoma Homo sapiens
VUMC-DIPG-10 Pediatric high-grade gliomas Homo sapiens
VUMC-DIPG-F Pediatric high-grade gliomas Homo sapiens
VUMC-DIPG-G Pediatric high-grade gliomas Homo sapiens
VUMC-HGG-09 Pediatric high-grade gliomas Homo sapiens
VUMC-HGG-14 Pediatric high-grade gliomas Homo sapiens
VUMC-HGG-11 Pediatric high-grade gliomas Homo sapiens
                    In-vivo Model VUMC-HGG-14 cells (50*104 cells in 5 uL) were stereotactically injected into the striatum (4-week old female athymic nude mice).
                    Experimental
                    Result(s)
Celastrol-induced degradation of FANCD2 sensitizes pediatric high-grade gliomas to the DNA-crosslinking agent carboplatin.
          Doxorubicin      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [11]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CERS1  Molecule Info 
Pathway MAP
Up-regulation Expression CERS4  Molecule Info 
Pathway MAP
Up-regulation Expression CERS6  Molecule Info 
Pathway MAP
                    In-vitro Model CT26 CVCL_7254 Mouse colon adenocarcinoma Mus musculus
HCT 8 CVCL_2478 Colon adenocarcinoma Homo sapiens
DLD-1 CVCL_0248 Colon adenocarcinoma Homo sapiens
HCT 116 CVCL_0291 Colon carcinoma Homo sapiens
                    In-vivo Model BALB/c mice were removed hair and injected CT26 cells (1.5*106) suspended in FBS: Matrigel (1:1, 200 uL/mouse) subcutaneously in the flank region of mice.
                    Experimental
                    Result(s)
Hydrogel-mediated delivery of celastrol and doxorubicin induces a synergistic effect on tumor regression via upregulation of ceramides.
          PHA665752      Solid tumour/cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [12]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Up-regulation Expression CASP3  Molecule Info 
Pathway MAP
Up-regulation Expression CASP7  Molecule Info 
Pathway MAP
                    In-vitro Model BEL-7402 CVCL_5492 Human hepatocellular carcinoma Homo sapiens
Huh-7 CVCL_0336 Adult hepatocellular carcinoma Homo sapiens
                    In-vivo Model Male nude mice (4-6 weeks) were inoculated subcutaneously with human liver cancer cell lines Huh7.
                    Experimental
                    Result(s)
Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo.
          Tanespimycin      Breast cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [13]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Biological
                    Regulation
Induction Proteotoxic stress
                    In-vitro Model U-251MG CVCL_0021 Astrocytoma Homo sapiens
U-343MG CVCL_S471 Glioblastoma Homo sapiens
                    Experimental
                    Result(s)
celastrol targets proteostasis by disrupting sulfyhydryl homeostasis, independently of ROS, in human glioblastoma cells. Targeting proteotoxic stress responses by inhibiting HSP90 with 17-N-Allylamino-17-demethoxygeldanamycin sensitizes human glioblastoma to celastrol treatment, thereby serving as a novel synergism to overcome drug resistance.
          Afatinib      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Achieving Therapeutic Synergy     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [14]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Biological
                    Regulation
Induction Mitochondrial Ca2+ overload
Induction ROS accumulation
                    In-vitro Model NCI-H23 CVCL_1547 Lung adenocarcinoma Homo sapiens
NCI-H292 CVCL_0455 Lung mucoepidermoid carcinoma Homo sapiens
                    In-vivo Model A volume of 100 ul H23 cell suspension (1 * 108 cells/ml in normal saline) was subcutaneously injected into the right flanks of mouse (male BALB/c nude mice of 4-5 weeks old).
                    Experimental
                    Result(s)
Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis.
    β. A List of Drug(s) Whose Resistance can be Reversed by This NP
          Cisplatin      Bladder cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [15]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Expression SPC25  Molecule Info 
Pathway MAP
                    In-vitro Model SAS CVCL_1675 Tongue squamous cell carcinoma Homo sapiens
CGHNC8 Oral squamous cell carcinoma cells Homo sapiens
                    Experimental
                    Result(s)
Celastrol effectively inhibit SPC25 expression and reverse CR phenotype.
          Erlotinib      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [16]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation EGFR  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vitro Model A-549 CVCL_0023 Lung adenocarcinoma Homo sapiens
NCI-H1975 CVCL_1511 Lung adenocarcinoma Homo sapiens
                    In-vivo Model Each mouse (five-week-old BALB/c nude mice) was subcutaneously injected with 2 * 106 H1975 lung carcinoma cells in logarithmic growth phase.
                    Experimental
                    Result(s)
Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance.
          Gefitinib      Lung cancer     Click to Show/Hide the Molecular Data of This Drug
                 Reversing Drug Resistance     Click to Show/Hide
                    Representative Experiment Reporting the Effect of This Combination [16]
                    Detail(s)  Combination Info  click to show the detail info of this combination
                    Molecule(s)
                    Regulation
Down-regulation Phosphorylation AKT1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation EGFR  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation ERK1  Molecule Info 
Pathway MAP
Down-regulation Phosphorylation STAT3  Molecule Info 
Pathway MAP
                    In-vitro Model A-549 CVCL_0023 Lung adenocarcinoma Homo sapiens
NCI-H1975 CVCL_1511 Lung adenocarcinoma Homo sapiens
                    In-vivo Model Each mouse (five-week-old BALB/c nude mice) was subcutaneously injected with 2 * 106 H1975 lung carcinoma cells in logarithmic growth phase.
                    Experimental
                    Result(s)
Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance.
Target and Pathway
Target(s) Interleukin-1 beta (IL1B)  Molecule Info  [1]
Tumor necrosis factor (TNF)  Molecule Info  [1]
KEGG Pathway MAPK signaling pathway Click to Show/Hide
2 Cytokine-cytokine receptor interaction
3 NF-kappa B signaling pathway
4 Sphingolipid signaling pathway
5 mTOR signaling pathway
6 Apoptosis
7 TGF-beta signaling pathway
8 Osteoclast differentiation
9 Antigen processing and presentation
10 Toll-like receptor signaling pathway
11 NOD-like receptor signaling pathway
12 RIG-I-like receptor signaling pathway
13 Hematopoietic cell lineage
14 Natural killer cell mediated cytotoxicity
15 T cell receptor signaling pathway
16 Fc epsilon RI signaling pathway
17 TNF signaling pathway
18 Adipocytokine signaling pathway
19 Type II diabetes mellitus
20 Non-alcoholic fatty liver disease (NAFLD)
21 Type I diabetes mellitus
22 Alzheimer's disease
23 Amyotrophic lateral sclerosis (ALS)
24 Pertussis
25 Legionellosis
26 Leishmaniasis
27 Chagas disease (American trypanosomiasis)
28 African trypanosomiasis
29 Malaria
30 Toxoplasmosis
31 Amoebiasis
32 Tuberculosis
33 Hepatitis C
34 Hepatitis B
35 Influenza A
36 HTLV-I infection
37 Herpes simplex infection
38 Proteoglycans in cancer
39 Asthma
40 Inflammatory bowel disease (IBD)
41 Systemic lupus erythematosus
42 Rheumatoid arthritis
43 Allograft rejection
44 Graft-versus-host disease
45 Hypertrophic cardiomyopathy (HCM)
46 Dilated cardiomyopathy
47 Cytosolic DNA-sensing pathway
48 Inflammatory mediator regulation of TRP channels
49 Prion diseases
50 Salmonella infection
51 Measles
NetPath Pathway TCR Signaling Pathway Click to Show/Hide
2 IL2 Signaling Pathway
3 IL3 Signaling Pathway
4 IL4 Signaling Pathway
5 Leptin Signaling Pathway
6 RANKL Signaling Pathway
7 IL1 Signaling Pathway
8 IL5 Signaling Pathway
9 TGF_beta_Receptor Signaling Pathway
10 Wnt Signaling Pathway
11 TNFalpha Signaling Pathway
Panther Pathway Apoptosis signaling pathway Click to Show/Hide
2 Wnt signaling pathway
Pathwhiz Pathway Fc Epsilon Receptor I Signaling in Mast Cells Click to Show/Hide
Pathway Interaction Database IL27-mediated signaling events Click to Show/Hide
2 Canonical NF-kappaB pathway
3 Calcineurin-regulated NFAT-dependent transcription in lymphocytes
4 Angiopoietin receptor Tie2-mediated signaling
5 Signaling events mediated by HDAC Class I
6 TNF receptor signaling pathway
7 Ceramide signaling pathway
8 amb2 Integrin signaling
9 RXR and RAR heterodimerization with other nuclear receptor
10 IL23-mediated signaling events
11 HIV-1 Nef: Negative effector of Fas and TNF-alpha
12 Caspase Cascade in Apoptosis
13 Cellular roles of Anthrax toxin
14 Downstream signaling in na&#xef
15
16 IL12-mediated signaling events
17 IL1-mediated signaling events
18 IFN-gamma pathway
Reactome Transcriptional regulation of white adipocyte differentiation Click to Show/Hide
2 TNFR1-induced proapoptotic signaling
3 Regulation of TNFR1 signaling
4 TNFR1-induced NFkappaB signaling pathway
5 TNFR1-mediated ceramide production
6 TNFR2 non-canonical NF-kB pathway
7 TNF signaling
8 Interleukin-1 signaling
9 Interleukin-1 processing
10 CLEC7A/inflammasome pathway
WikiPathways Toll-like receptor signaling pathway Click to Show/Hide
2 Monoamine Transport
3 SIDS Susceptibility Pathways
4 TGF Beta Signaling Pathway
5 Cytokines and Inflammatory Response
6 MAPK Signaling Pathway
7 EV release from cardiac cells and their functional effects
8 FAS pathway and Stress induction of HSP regulation
9 Apoptosis-related network due to altered Notch3 in ovarian cancer
10 Cardiac Hypertrophic Response
11 Transcriptional Regulation of White Adipocyte Differentiation
12 Aryl Hydrocarbon Receptor
13 Apoptosis
14 Nanoparticle triggered regulated necrosis
15 Amyotrophic lateral sclerosis (ALS)
16 Adipogenesis
17 Allograft Rejection
18 TNF alpha Signaling Pathway
19 TWEAK Signaling Pathway
20 Extrinsic Pathway for Apoptosis
21 Folate Metabolism
22 MicroRNAs in cardiomyocyte hypertrophy
23 Vitamin B12 Metabolism
24 Selenium Micronutrient Network
25 Regulation of toll-like receptor signaling pathway
26 Matrix Metalloproteinases
27 TCR Signaling Pathway
28 Type II interferon signaling (IFNG)
29 Senescence and Autophagy in Cancer
30 Myometrial Relaxation and Contraction Pathways
31 Aryl Hydrocarbon Receptor Pathway
32 IL1 and megakaryotyces in obesity
33 Hematopoietic Stem Cell Differentiation
34 Spinal Cord Injury
35 Alzheimers Disease
36 Leptin signaling pathway
37 IL-1 signaling pathway
38 Interleukin-1 signaling
39 Serotonin Transporter Activity
40 NOD pathway
References
Reference 1 Emerging disease-modifying therapies for the treatment of motor neuron disease/amyotropic lateral sclerosis. Expert Opin Emerg Drugs. 2007 May;12(2):229-52.
Reference 2 Celastrol synergistically enhances temozolomide cytotoxicity in melanoma cells. Mol Cancer Res. 2009 Dec;7(12):1946-53.
Reference 3 The coordinated effects of Apatinib and Tripterine on the proliferation, invasiveness and apoptosis of human hepatoma Hep3B cells. Oncol Lett. 2018 Jul;16(1):353-361.
Reference 4 Anticancer activity of Celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers. Cancer Biol Ther. 2011 Jan 15;11(2):263-76.
Reference 5 Autophagy flux inhibition mediated by celastrol sensitized lung cancer cells to TRAIL?induced apoptosis via regulation of mitochondrial transmembrane potential and reactive oxygen species. Mol Med Rep. 2019 Feb;19(2):984-993.
Reference 6 Synergistic anti-cancer activity by the combination of TRAIL/APO-2L and celastrol. Cancer Invest. 2010 Jan;28(1):23-32.
Reference 7 Celastrol Attenuates the Invasion and Migration and Augments the Anticancer Effects of Bortezomib in a Xenograft Mouse Model of Multiple Myeloma. Front Pharmacol. 2018 May 3;9:365.
Reference 8 Simultaneous NF-kappaB inhibition and E-cadherin upregulation mediate mutually synergistic anticancer activity of celastrol and SAHA in vitro and in vivo. Int J Cancer. 2014 Oct 1;135(7):1721-32.
Reference 9 Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. PLoS One. 2012;7(12):e52333.
Reference 10 Celastrol-induced degradation of FANCD2 sensitizes pediatric high-grade gliomas to the DNA-crosslinking agent carboplatin. EBioMedicine. 2019 Dec;50:81-92.
Reference 11 Hydrogel-mediated delivery of celastrol and doxorubicin induces a synergistic effect on tumor regression via upregulation of ceramides. Nanoscale. 2020 Sep 21;12(35):18463-18475.
Reference 12 Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Mol Biol Rep. 2013 Jul;40(7):4203-9.
Reference 13 Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis. 2014 May 8;5(5):e1216.
Reference 14 Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis. J Cell Physiol. 2021 Jun;236(6):4538-4554.
Reference 15 A Combined Systemic Strategy for Overcoming Cisplatin Resistance in Head and Neck Cancer: From Target Identification to Drug Discovery. Cancers (Basel). 2020 Nov 23;12(11):3482.
Reference 16 Celastrol improves the therapeutic efficacy of EGFR-TKIs for non-small-cell lung cancer by overcoming EGFR T790M drug resistance. Anticancer Drugs. 2018 Sep;29(8):748-755.
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
 Download Picture         KEGG Link      
Cite NPCDR
Visitor Map
Correspondence

X. N. Sun, Y. T. Zhang, Y. Zhou, X. C. Lian, L. L. Yan, T. Pan, T. Jin, H. Xie, Z. M. Liang, W. Q. Qiu, J. X. Wang, Z. R. Li, F. Zhu*, X. B. Sui*. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Research. 50(D1): 1324-1333 (2020). PMID: 34664659

Prof. Feng ZHU  (zhufeng@zju.edu.cn)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China


Prof. Xinbing SUI  (hzzju@hznu.edu.cn)

School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China